Что такое симпато-адреналовый криз. В чем опасность дисфункции симпато-адреаналовой системы? К излишней активности симпатоадреналовой системы

Симпатоадреналовая система – функциональное взаимодействие структур симпатичной нервной системы (НС) и мозгового вещества надпочечников.

Навигация по статье

Роль симпатоадреналовой системы

Является важным компонентом нейрогуморальной регуляции процессов в организме. Ее активация запускает каскад адаптационных изменений обмена веществ, которые способствуют мобилизации энергетических ресурсов организма.

Способствует приспосабливанию организма к изменчивым условиям. Частая и длительная активация симпатоадреналовой системы приводит к развитию патологических адаптаций кровеносной, эндокринной и нервной систем.

Гормоны симпатоадреналовой системы

Симпатическая НС иннервирует периферические органы и представлена специфическими структурами в ЦНС. В состав входит мозговое вещество надпочечников и скопления хромаффинных клеток за их пределами.

Объединение этих 2 структур основывается, в первую очередь, на общем происхождении. Клетки обеих структур в эмбриогенезе образуются из клеток нервного гребня.

Во вторых, обе структуры синтезируют и выделяют горомоны катехоламины. Для надпочечников характерно выделения гормонов – адреналина и норадреналина, для симпатической НС – норадреналина.

Существует связь между активностью симпатической системы и секрецией адреналина надпочечниками, но изменения происходят в разной степени.

Сильная активация симпатоадреналовой системы ведет к повышению уровня выделения адреналина, что усиливает активацию симпатики. Преганглионарные симпатические волокна в свою очередь оканчиваются непосредственно на клетках мозгового вещества надпочечников, что стимулирует секрецию адреналина.

Может быть независимая робота этих структур. Процессы синтеза, депонирования и секреции гормонов катехоламинов связаны, так что можно говорить о существовании саморегулирующегося нейрогуморального контроля.

Симпатоадреналовая система [лат. (systema nervorum) sympathicum симпатическая нервная система + adrenalis надпочечный, относящийся к надпочечнику] является важнейшим компонентом механизма нейрогуморальной регуляции функций организма. Ее активация обеспечивает быстрые адаптивные изменения в обмене веществ, направленные на мобилизацию энергии, а также обусловливает приспособительные реакции организма, особенно в экстремальных условиях нарушения гомеостаза. Физиологическое значение cимпатоадреналовая система заключается в регуляции практически всех функций организма; при развитии патологического процесса активность системы изменяется, что приводит к нарушению этих функций. Частые и значительные по силе активирующие воздействия на cимпатоадреналовая система осуществляют превращение регуляторных физиологических реакций в патогенетический механизм развития так называемых болезней адаптации, проявляющихся сердечно-сосудистой, нервно-психической, эндокринной и другой патологией.

В состав cимпатоадреналовая система входят симпатическая нервная система, иннервирующая все органы на периферии и представленная специфическими структурами в ц.н.с., и адреналовая система, включающая мозговое вещество надпочечников и вненадпочечниковые скопления хромаффинной ткани (параганглии, расположенные вдоль симпатической цепочки, органы Цуккеркандля, находящиеся у бифуркации аорты и по ходу крупных сосудов).
Отдельные хромаффинные клетки возможно имеются в составе слизистых оболочек, выстилающих полые органы (см. АПУД-система). Объединение таких разных морфологических структур в единую систему связано не только с их общим эмбриональным происхождением, но и с выработкой этими тканями гуморальных продуктов cимпатоадреналовая система - катехоламинов, или пирокатехоламиновых аминов. Синтезируясь, катехоламины накапливаются (депонируются) и секретируются в отдельных органах и тканях в разных соотношениях, но претерпевают идентичные биохимические превращения в организме (с образованием как физиологически активных метаболитов, так и продуктов полной их деградации); оказывают воздействие на эффекторные клетки через специфические мембранные адренорецепторы и внутриклеточный аденилатциклазный механизм. Процессы синтеза, депонирования, секреции, метаболизма, инактивации и действие каждого из катехоламинов взаимосвязаны, что делает cимпатоадреналовая система единой специфической саморегулирующейся системой нейрогуморальной регуляции функций организма, имеющей важное значение в физиологии и патологии живого организма.

Симпатическая нервная система немедленно реагирует на малейшие отклонения в гомеостазе, тогда как мозговое вещество надпочечников чувствительно не ко всем стрессорным воздействиям.
Симпатическая нервная система играет важную роль в реакции на физическую нагрузку, ортостатическую гипотензию, охлаждение, а выделение адреналина из надпочечников человека вызывается в основном психическими нагрузками, тревожными состояниями, гипоксией и гипогликемией.

Возрастные особенности функционирования cимпатоадреналовая система связаны с тем, что окончательное ее созревание происходит к 7-10 годам; до этого времени отмечается ее неустойчивость (как правило, гиперсекреторная активность cимпатоадреналовой системы). В различные возрастные периоды у детей регуляторную роль осуществляют последовательно дофамин, норадреналин, адреналин.

Последний представляет собой гормон мозгового вещества надпочечников и вненадпочечниковой хромаффинной ткани; обладает выраженным кардиотоническим, прессорным гипергликемическим и пирогенным действием, вызывает сужение сосудов кожи и почек, расширяет коронарные сосуды, сосуды скелетных мышц, гладкой мускулатуры бронхов, желудочно-кишечного тракта и т.д.

Физиологическая роль cимпатоадреналовой системы для организма велика.
Ее высокая эффективность и стабильность функционирования обеспечиваются как распространенностью структур, разнообразными биохимическими механизмами регуляции синтеза, секреции и инактивации катехоламинов, так и системой адренергических рецепторов на эффекторных клетках. Удаление мозгового слоя обоих надпочечников (при сохранении части коркового вещества) не представляет угрозы для жизни. Истощение cимпатоадреналовой системы наблюдается лишь в агональном состоянии..

Симпатоадреналовая система - функциональное взаимодействие структур симпатичной нервной системы и мозгового вещества надпочечников. Является важным компонентом системы нейрогуморальной регуляции процессов в организме. Ее активация запускает каскад адаптационных изменений обмена веществ, которые способствуют мобилизации энергетических ресурсов организма. Способствует приспосабливанию организма к изменчивым условиям. Частая и длительная активация системы приводит к развитию патологических адаптаций кровеносной системы, эндокринной и нервной систем. Симпатическая нервная система иннервирует периферические органы и представлена специфическими структурами в центральной нервной системе. В состав адреналовой системы входить мозговое вещество надпочечников и скопления хромаффинных клеток за их пределами.
Объединение этих 2-х систем основывается, во первых, на общем происхождении. Клетки обоих систем в эмбриогенезе образуются с клеток нервного гребня. Во вторых, обе системы синтезируют и выделяют катехоламины. Для надпочечников характерно выделения адреналина и норадреналина, для симпатичной нервной системы - норадреналина. Существует связь между активностью симпатической системы и секрецией адреналина надпочечниками, но изменения происходят в разной степени. Сильная активация симпатоадреналовой системы ведет к повышению уровня выделения адреналина, что усиливает активация симпатической нервной системы. Преганглионарные симпатические волокна в свою очередь оканчиваются непосредственно на клетках мозгового вещества надпочечников, что стимулирует секрецию адреналина. Может быть и независимая робота этих систем. Процессы синтеза, депонирования и секреции катехоламинов связаны, так что можно говорить о существовании саморегулирующей системы нейрогуморального контроля.


4 вопрос

Все гормоны имеют несколько важных свойств, которые отличают их от других биологически активных веществ:

1. Гормоны вырабатываются в клетках эндокринных желез и секретируются в кровь.

2. Все гормоны являются чрезвычайно активными веществами, они вырабатываются в малых дозировках (0,001-0,01 моль/л), но оказывают выраженный и быстрый биологический эффект.

3. Гормоны специфически воздействуют на органы и ткани посредством рецепторов. Они подходят к рецептору как ключ к замку, а потому воздействуют только на восприимчивые клетки и ткани.

4. Гормоны отличаются тем, что имеют определенный ритм секреции, например, гормоны коры надпочечников имеют суточный ритм секреции, а иногда ритм является месячным (половые гормоны у женщин) или интенсивность секреции изменяется в течение более продолжительного периода времени (сезонные ритмы).

5 вопрос

По химическому строению гормоны делят на:

1) пептидные и белковые гормоны, 2) гормоны – производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды – гормоноподоб-ные вещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тироли-берин, соматолиберин, соматостатин, гормон роста, кортикотропин, тире-отропин и др. – см. далее) , а также гормоны поджелудочной железы (инсулин, глюкагон) . Гормоны – производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные) . Гормоны 1-й и 2-й групп хорошо растворимы в воде.

Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды) , половыми гормонами (эстрогены и андрогены) , а также гормональной формой витамина D.

Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой) , представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают свое действие на клетки, находящиеся вблизи их места синтеза.

Симпато-адреаналовая система включает нервные окончания и , отвечает за выброс гормонов стресса в кровь в случае критических ситуация.

Симпато-адреналовый криз, иначе – паническая атака, является одним из характерных проявлений гипертензивной формы вегето-сосудистой дистонии.

Это состояние не является заболеванием, а считается следствием накопленной физической и психо-эмоциональной усталости. Cимпато-адреналовый криз характеризуется сильным страхом и зачастую возникает ночью либо вечером.

Несогласованность в работе различных составляющих вегетативной нервной системы становится причиной сбоя регуляции органов.

Заключается это в том, что сигнал, который получают системы организма, является неверным либо преждевременным.

На фоне этого дыхательная, сердечнососудистая системы, а также начинают собственную работу, которая из-за ошибочного сигнала от вегетативной вносит еще больший дисбаланс.

Такое нарушение носит название вегетативная дисфункция, иначе – нейроциркуляторная. Она может быть первичной и вторичной формы.

Первичная форма возникает по причине наследственных факторов, а вот вторичная может быть спровоцирована каким-то патологическим процессом в организме. Причины, приводящие к вегетативной дисфункции, можно подразделить на две группы – психо-эмоциональной природы и физиологической.

К психо-эмоциональным факторам, которые способствуют развитию вегетативной дисфункции, относятся следующие:

  1. Психологический тип – интроверт либо экстраверт.
  2. Чрезмерно частые стресогенные ситуации.
  3. Наследственная предрасположенность к линии поведения матери.

К физиологическим факторам риска, способным провоцировать вегетативную дисфункцию, относят такие патологические состояния:

  1. Чрезмерные физнагрузки, которые оказались выше допустимой нормы организма.
  2. Патологические состояния сердечнососудистой системы.
  3. Нарушения работы и заболевания ЖКТ.
  4. Нарушения гормонального фона различной природы, в том числе – и из-за принятия медикаментов.
  5. Травмации черепной коробки и головного мозга.
  6. Заболевания нервной системы инфекционной природы.
  7. Несбалансированность рациона питания, ставшие причиной ожирения, а также чрезмерное потребление спиртосодержащих напитков.

Когда имеются нарушения в данной системе, сигнал к надпочечникам становится некорректным и происходят нарушения адреналинового баланса, что приводит к кризам.

Симптоматические проявления, которые даст симпато-адреналовый криз, достаточно неприятны и включают в себя не только физиологические неудобства, но и психо-эмоциональные. Криз характеризуется следующим рядом реакций организма на сбой:

  1. Завышение показателей кровяного давления.
  2. Боли головы, удушье и тахикардия.
  3. Частые позывы к мочеиспусканию с завышенными объемами выводимой урины.
  4. Внезапные приступы озноба.
  5. Нарушение слюноотделения и сухость ротовой полости.
  6. Необоснованная тревожность и усиление страха смерти.
  7. Возможны тела, что проявляется повышениями температуры.

Подобный криз могут провоцировать не только факторы, во многом зависящие от человека (умственная и физическая перегрузка), но также и факторы, не поддающиеся контролю (резкая смена погодных условий, стресогенные ситуации).

Диэнцефальные кризы происходят из-за нарушений гипоталамуса различного свойства. Наиболее распространенные причины диэнцифального синдрома следующие:

  1. Патологические .
  2. Негативные воздействия токсических препаратов.
  3. Постоянная обстановка, травмирующая психику.
  4. Прогрессирование опухолевых образований.
  5. Травмации головного мозга и черепной коробки.

По собственным симптоматическим проявлениям криз походит на вагоинсулярный тип, однако присутствуют и некоторые особенности, которые свойственны симпатоадреналовому кризу:

  1. Быстрое развитие пароксизма – состояние пациента стремительно ухудшается.
  2. Преобладание вегетативной симптоматики.
  3. Ощущение нехватки воздуха, посинение конечностей, побледнение лица.
  4. Перепады АД и частоты сокращений сердечной мышцы, болями области сердца.
  5. Сухость слизистых ротовой полости, неконтролируемая жаждой, учащенность позывов к мочеиспусканию и повышенное потоотделение.
  6. Нарушение терморегуляции организма, повышение температуры тела. Озноб сменяется жаром.
  7. Проявляется чувство беспричинного беспокойства, человек излишне возбужден, складывается ощущение смертельной опасности.

После того, как приступ проходит, пациент начинает чувствовать слабость и его клонит в сон.

Вагоинсулярный криз

Вагоинсулярный пароксизм имеет отличные от симпатоадреналового криза проявления, хотя причины, его провоцирующие, сходны во многом. Наиболее характерными и распространенными проявлениями для данного типа криза являются:

  1. Проявление реакций организма, которые свойственны ему при бронхиальной астме.
  2. Стремительное и внезапное побледнение кожных покровов, падение АД, предобморочные состояния, понижение температуры тела.
  3. Боли области сердца и приступы мигрени.
  4. Позывы к рвоте, тошнота, болезненность живота и прочие проявления со стороны ЖКТ.

В редких случаях, вагоинсулярный криз может быть сходным по собственным проявлениям с тяжелой аллергической реакцией и привести к отеку Квинке.

Первая помощь при кризах

Правильным решением при подозрениях на криз станет вызов кареты скорой.

Однако человеку с приступом требуется оказать первую помощь, которая заключается в следующих моментах:

  • требуется успокоить человека;
  • расстегнуть ворот одежды;
  • обеспечить приток свежего воздуха;
  • замерить АД.

– это не единоразовое явление, пароксизмы будут повторяться. Самостоятельно лечить проявления вегетативной дисфункции не рекомендуется, так как диагностировать ее имеет возможность лишь специалист и, соответственно, разработать наиболее подходящую терапию.

К наиболее реактивным, мощным и устойчиво функционирующим регуляторным системам, ответственным за включение многообразных компенсаторно-приспособительных реакций, а также некоторых патологических реакций организма в ответ на любую, и тем более шокогенную, травму, относится САС.

Значение активации САС, сопровождающейся повышением выработки и действия катехоламинов (КА), сводится прежде всего к участию в срочном переключении обменных процессов и работы жизненно важных регуляторных (нервной, эндокринной, иммунных и др.) и исполнительных (сердечно-сосудистой, дыхательной, гемостаза и др.) систем организма на «аварийный», энергетически расточительный уровень, а также к мобилизации механизмов адаптации и резистентности организма при действии на него шокогенных факторов. Однако как избыток, так и недостаток КА могут оказывать на организм и явное патогенное действие.

В начальных периодах шока увеличивается число разрядов в эфферентных симпатических нервных волокнах; резко активизируется синтез и секреция КА в адренергических нейронах, особенно в терминалях их нервных волокон, а также адреналина (А), норадреналина (НА), ДОФА и дофамина в мозговом веществе надпочечников и в тканях головного мозга (преимущественно в гипоталамусе и в коре больших полушарий), повышается уровень КА в крови (от 2 до 20 и более раз в сравнении с нормой) и поступление их в различные ткани и органы кратковременно возрастает, а затем нормализуется активность МАО в клетках различных органов, возбуждаются альфа- и бета-адренорецепторы. Итогом этого являются различные физиологические сдвиги (повышение тонуса ЦНС, в том числе высших вегетативных и эндокринных центров, увеличение частоты и силы сердечных сокращений и тонуса артериол большинства органов, мобилизации крови из депо, а также усиление обмена веществ за счет активизации гликолиза, гликогенолиза, гликонергенеза, липолиза и т. д.). Важное место в активации САС при развивающемся шоке принадлежит рефлексам с ноци-, баро- и Хеморецепторами тканей, сосудов, сердца, возникающим в ответ на их альтерацию, гипогемоперфузию, гипоксию и расстройства метаболизма.

Сразу после тяжелой механической травмы и в первые часы после нее содержание А в крови пострадавших повышается в 6 раз, а НА — в 2 раза. При этом увеличение содержания КА в крови напрямую зависит от выраженности гішоволемии, гипоксемии и ацидоза (Serfrin Р., 1981).

При травматическом и геморрагическом шоке содержание А и НА в крови возрастает в 10-50 раз, а выброс А надпочечниками — в 8-10 раз (Виноградов В. М. и др, 1975). Однако в первые 30 с после травмы происходит увеличение содержания А и снижение НА в крови и тканях надпочечников и гипоталамуса (Еремина С. А., 1968-1970). Значительно увеличивается выброс запасов А клетками мозгового вещества на/щочечников и активируются процессы восстановления этих запасов при анафилактическом шоке (Rydzynski К. et al., 1986).

У крыс в течение первого часа длительного раздавливания мягких тканей бедра (ДРМТ) быстро и значительно увеличивалось содержание А, НА, ДОФА, дофамина в надпочечниках и в крови; уровень А и НА в головном мозге, легких, печени и почках повышался, а в кишечнике и поврежденных мышцах снижался (Ельский В. Н., 1977-1982; Нигуляну В. И. и др., 1984). В то же время содержание предшественников (ДОФА, дофамина) существенно снижалось во многих органах (головном мозге, легких, печени, почках, тонком кишечнике, скелетных мышцах) и повышалось в миокарде. К концу 4-часового периода сдавления тканей в надпочечниках снижался уровень А и ДОФА, повышалось содержание НА и дофамина, что является признаком ослабления функции мозгового вещества надпочечников. При этом содержание А во многих органах (за исключением тонкого кишечника и скелетных мышц) продолжало оставаться увеличенным, а содержание НА, ДОФА и дофамина в головном мозге, легких, печени, почках, кишечнике и мышцах снижалось. Лишь в сердце на фоне уменьшения НА было отмечено увеличение содержания как А, так и ДОФА и дофамина.

Спустя 6-20 ч после прекращения сдавливания тканей содержание А, НА, ДОФА в надпочечниках и в крови прогрессивно снижалось, что свидетельствует об угнетении синтеза КА в хромаффинной ткани. Количество А в ряде органов (головной мозг, сердце и др.) оставалось увеличенным, а в некоторых (почки, кишечник) — сниженным, в то время как содержание НА, ДОФА и дофамина оказывалось сниженным во всех изученных органах (особенно в кишечнике, печени и поврежденных мышцах). При этом отмечено стойкое снижение активности МАО в клетках различных органов.

По данным В. В. Давыдова, через 4 и 8 ч после прекращения 4-часового сдавливания тканей уровень А в надпочечниках снижался соответственно на 45 и 74 %, НА — на 38 и 62 %, дофамина — на 35 и 50 %. В то же время содержание А в плазме крови, в сравнении с нормой, было соответственно повышено на 87 и 22 %, а НА снижено на 35 и 60 %. Причем тяжесть и исход шока прямо коррелировали с первоначальной гиперактивностью САС.

В торпидной фазе травматического шока у собак содержание А и НА в надпочечниках снижено в сравнении с эректильной фазой, но выше чем в норме (Еремина С. А., 1970). По мере углубления торпидной фазы на фоне повышенного содержания А резко падает в крови уровень НА, а в тканях мозга (гипоталамусе, коре больших полушарий), миокарда и печени уменьшается также содержание адреналовых и экстраадреналовых КА.

1984) . При ожоговом шоке секреция А надпочечниками повышена, НА падает, о чем свидетельствует увеличение в крови А и снижение НА (Сааков Б. А., Бардахчьян Э. А., 1979). По мере углубления шока может происходить либо снижение (Shu Chien, 1967), либо повышение (Виноградов В. М. и др., 1975) импульсации по симпатическим волокнам.

Высокий уровень КА в крови тяжело пострадавших повышен и достигает максимума перед летальным исходом (Р. Serfrin, 1981). Одним из механизмов гипрекатехоламинемии является угнетение активности ферментов, ответственных за метаболизм КА.

В терминальный период торпидной фазы травматического шока существенно снижается количество КА (особенно НА) в надпочечниках и других органах: почках, печени, селезенке, сердце, головном мозге (Горбов А. А., 1976). В стадии необратимого шока содержание катехоламинов в организме истощается, резко ослабевает реакция адренорецепторов на экзогенные КА, а также снижается активность МАО (Laborit Н., London А., 1969).

В период глубокой постгеморрагической гипотензии и гипово- лемии возможны как ингибирование освобождения КА из окончаний симпатических нервных волокон, так и аутоингибирование системы адренергических рецепторов (Bond R., Jonson J.,

При эндотоксическом шоке развиваются дистрофические (некротические) изменения адренорецепторов надпочечников и их функциональная недостаточность (Бардахчьян Э. А., Кириченко Ю. Т., 1985).

Выяснение функциональной активности САС при шоке (синтеза, секреции КА; их распределения в крови, тканях, органах; метаболизма, выведения и проявления физиологического действия как результат взаимодействия с соответствующими адренорецепторами) имеет важное диагностическое, патогенетическое и прогностическое значение. Возникающая в ранние сроки после шокогенной травмы выраженная активизация САС является биологически целесообразной реакцией поврежденного организма. Благодаря ей включаются и активизируются жизненно важные адаптивные и гомеостатические механизмы, в реализации которых принимают участие различные отделы нервной, эндокринной, сердечно-сосудистой и других систем, а также метаболические процессы.

Активизация САС, направленная на обеспечение метаболической и функциональной деятельности вегетативного и соматического отделов нервной системы, создает возможность поддержания АД на безопасном уровне при сниженном МОК, обеспечивает удовлетворительное кровоснабжение головного мозга и сердца на фоне снижения кровоснабжения почек, кишечника, печени, мышц.

Повышенная продукция А направлена на стимуляцию жизнедеятельности важной адаптивной системы — ГГ АС (Давыдов В. В., 1982, 1987; Axelrod Т. et al., 1984). Активизация САС способствует усиленному выделению опиоидных пептидов (в том числе — эндорфинов гипофизом, мет-энкефалинов надпочечниками), ослабляющих гиперактивность ноцицептивной системы, расстройства эндокринной системы, метаболических процессов, микроциркуляции (Крыжановский Г. Н. и др., 1987; Пшенникова М. Г., 1987), усиливает деятельность дыхательного центра, ослабляет ацидоз, стабилизирует кислотно-основное состояние (Базаре- иич Г. Я. и др., 1979, 1988), обеспечивает мобилизацию метаболических процессов через изменение активности аденилат- и гуа- пилатциклазных систем мембран клеток, липолиза, гликогено- лиза, глюконеогенеза, гликолиза, энергетического и водно-электролитного обмена и т. д. (Ельский В. Н., 1975-1984; Me Ardle et al., 1975).

Однако как избыточная, так и недостаточная активность САС способствует развитию декомпенсации микроциркуляции, усилению гипоксии и нарушений функций многих тканей, органов и систем, утяжеляет течение процесса и ухудшает его исходы.

Избыток эндогенных и/или экзогенных КА может оказать при шоке нежелательные побочные влияния также и на различные комплексы эндокринной системы. Он снижает толерантность организма к глюкозе, возникающую вследствие активизации глико- генолиза и угнетения секреции инсулина (из-за стимуляции альфа-рецепторов бета-клеток островков Лангерганса поджелудочной железы), подавляет секрецию не только инсулина, но и тирео- тропина, пролактина и других гормонов. Опиоидные пептиды, усиленно выделяющиеся при шоке и различных видах стресса (Лишманов Ю. Б. и др., 1987), ограничивают активацию САС за счет как торможения секреции НА, так и инактивации аденилат- циклазы в постсинаптической мембране. Таким образом, опиоидные пептиды могут оказывать защитное действие, ограничивая чрезмерную активацию САС, ослабляя и даже предупреждая повреждающий эффект катехоламинов.

Ослабление избыточной активности САС при травмах назначением нейролептиков и транквилизаторов (Насонкин О. С. и др., 1976; Давыдов В. В. и др., 1981, 1982), лейэнкефалинов (Крыжа- новский Г. Г. и др., 1987), бета-адреноблокаторов (Novelli G. et al., 1971), альфа-адреноблокаторов (Мазуркевич Г. С., 1976) уменьшает тяжесть шока. При назначении КА при шоке может выявляться как положительный, так и отрицательный терапевтический эффект.

Назначение при шоке НА и особенно предшественников КА (фенилаланина, альфа-тирозина, ДОФА, дофамина) может облегчать, а — А и мезатона либо не изменяет, либо утяжеляет шок (Виноградов В. М. и др., 1975; Laborit Н. et al., 1969). В этой связи становятся более понятными представленные выше данные об изменении в динамике шока содержания А, НА, ДОФА и дофамина в различных тканях и органах (на фоне длительного и значительного повышения содержания А уровень НА, ДОФА и дофамина после увеличения довольно быстро и значительно снижается).

Резкое угнетение САС ослабляет защитные механизмы при шоке. Так, деструкция центральных адренергических аксонов и окончаний, в сравнении с периферической симпатэктомией, приводит к повреждениям гипоталамуса и снижению общей реактивности организма при турникетном шоке у крыс (Stoner Н. et al., 1975).

В глубокой торпидной фазе шока, особенно в ее терминальном периоде, возникает не только существенное снижение функции САС, но и наибольшее уменьшение доставки КА к клеткам мно- . их тканей и органов и снижение их физиологической активности. По мере прогрессирования торпидной фазы шока заметно ослабевает роль КА в регуляции различны* метаболических (главным образом, энергетических) и физиологических (главным образом, гемодинамических) процессов.

Усиленно продуцирующиеся при шоке опиоидные пептиды, отчетливо тормозящие как высвобождение КА из терминалей симпатических волокон в сосудах, так и их физиологический эффект, способствуют прогрессированию артериальной гипотензии и угнетению кровообращения (Guoll N., 1987), а значит утяжелению шока. Увеличенная посттравматическая продукция опио- идных пептидов, способствующая ослаблению активности САС в условиях прогрессирующих гиповолемии и гипотензии, из защитной реакции может трансформироваться в повреждающую.

Таким образом, изменениям функций САС, обмена КА в тканях и органах и их физиологического действия принадлежит важная роль как в патогенезе, так и лечений шока. К одной из компенсаторно-приспособительных реакций травмированного организма следует отнести быстро возникающую и довольно длительно тохранятощутсля нъураженнуто САС, которая про

является при следующих условиях: увеличении синтеза и секреции хромаффинной тканью и адренергическими нейронами КА (ДОФА, дофамина, НА, А); увеличении транспорта и поступления КА в ткани и органы; повышении физиологической активности КА (обеспечивающей активизацию ГГАС, формирование и поддержание централизации кровообращения, стимуляцию дыхания, стабилизацию кислотно-основного состояния внутренних сред организма, активацию ферментов энергетического обмена и т. д.). К патологическим реакциям при шоке относятся как избыточная, так и недостаточная по силе и длительности активизация САС, а тем более прогрессирующее снижение ее функций, особенно уменьшение содержания в крови и тканях НА, ДОФА и дофамина, угнетение активности МАО в тканях, снижение и извращение чувствительности адренорецепторов к КА. В целом такая реакция САС способствует ускорению декомпенсации многообразных функций организма.

Однако до настоящего времени недостаточно изучены как особенности деятельности различных звеньев САС в динамике разных видов шока (не только в клинике, но и в эксперименте), так и значение ее изменений в генезе многообразных приспособительных и патологических реакций организма.