Основная структурная единица нервной ткани. Ткани

Нервная ткань человека в организме имеет несколько мест преимущественной локализации. Это мозг (спинной и головной), вегетативные ганглии и вегетативная нервная система (метасимпатический отдел). Головной мозг человека складывается из совокупности нейронов, общее число которых составляет не один миллиард. Сам же нейрон состоит из сома - тела, а также отростков, которые получают информацию от остальных нейронов - дендритов, и аксона, являющегося удлиненной структурой, передающей информацию от тела к дендритам других нервных клеток.

Различные варианты отростков у нейронов

Нервная ткань включает в себя в общей совокупности до триллиона нейронов различной конфигурации. Они могут быть униполярными, мультиполярными или биполярными в зависимости от количества отростков. Униполярные варианты с одним отростком встречаются у человека нечасто. Они обладают только одним отростком - аксоном. Такая единица нервной системы распространена у беспозвоночных животных (тех, которых нельзя отнести к млекопитающим, гадам, птицам и рыбам). При этом стоит учитывать, что по современной классификации к числу беспозвоночных относится до 97% всех видов животных, описанных к настоящему времени, поэтому униполярные нейроны достаточно широко представлены в земной фауне.

Нервная ткань с псевдоуниполярными нейронами (имеют один отросток, но раздвоенный на кончике) встречается у высших позвоночных в черепно-мозговых и спинно-мозговых нервах. Но чаще у позвоночных имеются в наличии биполярные образцы нейронов (есть и аксон, и дендрит) или мультиполярные (аксон один, а дендритов - несколько).

Классификация нервных клеток

Какую еще классификацию имеет нервная ткань? Нейроны в ней могут выполнять разные функции, поэтому среди них выделяют ряд типов, в том числе:

  • Афферентные нервные клетки, они же чувствительные, центростремительные. Эти клетки имеют небольшие размеры (относительно других клеток такого же типа), обладают разветвленным дендритом, связаны с функциями рецепторов сенсорного типа. Они расположены вне центральной нервной системы, имеют один отросток, расположенный в контакте с каким-либо органом, и другой отросток, направленный в спинной мозг. Эти нейроны создают импульсы под воздействием на органы внешней среды или каких-либо изменений в самом теле человека. Особенности нервной ткани, сформированной за счет чувствительных нейронов, таковы, что в зависимости от подвида нейронов (моносенсорные, полисенсорные или бисенсорные) могут получаться реакции, как строго на один раздражитель (моно), так и на несколько (би-, поли-). К примеру, нервные клетки во вторичной зоне на коре больших полушарий (зрительная зона) могут обрабатывать как зрительные, так и звуковые раздражители. Информация идет от центра к периферии и обратно.
  • Двигательные (эфферентные, моторные) нейроны передают информацию от центральной нервной системы к периферии. У них длинный аксон. Нервная ткань образует здесь продолжение аксона в виде периферических нервов, которые подходят к органам, мышцам (гладким и скелетным) и ко всем железам. Скорость прохождения возбуждения через аксон в нейронах такого типа очень велика.
  • Нейроны вставочного типа (ассоциативные) отвечают за передачу информации от чувствительного нейрона на двигательный. Ученые предполагают, что нервная ткань человека состоит из таких нейронов на 97-99%. Их преимущественной дислокацией является серое вещество в центральной нервной системе, и они могут быть тормозными или возбуждающими в зависимости от выполняемых функций. Первые из них имеют возможность не только передать импульс, но и модифицировать его, усиливая эффективность.

Специфические группы клеток

Помимо вышеуказанных классификаций нейроны могут быть фоновоактивными (реакции проходят безо всякого внешнего воздействия), другие же дают импульс только при применении к ним какой-то силы. Отдельную группу нервных клеток составляют нейроны-детекторы, которые могут избирательно реагировать на какие-то сенсорные сигналы, которые имеют поведенческое значение, они нужны для распознавания образов. К примеру, в новой коре имеются клетки, которые особенно чувствительны к данным, описывающим что-то, схожее с лицом человека. Свойства нервной ткани здесь таковы, что нейрон дает сигнал при любом расположении, цвете, размере «лицевого раздражителя». В зрительной же системе есть нейроны, отвечающие за детекцию сложных физических явлений вроде приближения и удаления предметов, циклические движения и др.

Нервная ткань образует в ряде случаев комплексы, очень важные для работы головного мозга, поэтому некоторые нейроны имеют персональные имена в честь открывших их ученых. Это клетки Беца, очень крупные по размерам, обеспечивающие связь двигательного анализатора через корковый конец с моторными ядрами в стволах головного мозга и ряда отделов спинного мозга. Это и тормозные клетки Реншоу, наоборот, небольшие по размерам, помогающие стабилизировать мотонейроны при удержании нагрузки, к примеру, на руку и для поддержания расположения тела человека в пространстве и др.

На каждый нейрон приходится около пяти нейроглий

Строение нервных тканей включает в себя еще один элемент под названием «нейроглия». Эти клетки, которые называют еще глиальными или глиоцитами, по размерам в 3-4 раза меньше самих нейронов. В мозге человека нейроглий в пять раз больше, чем нейронов, что, возможно, обуславливается тем, что нейроглии поддерживают работу нейронов, выполняя различные функции. Свойства нервной ткани данного вида таковы, что у взрослых людей глиоциты являются возобновляющимися, в отличие от нейронов, которые не восстанавливаются. К функциональным «обязанностям» нейроглий относится создание гематоэнцефалического барьера с помощью глиоцитов-астроцитов, которые не дают проникнуть в мозг всем крупным молекулам, патологическим процессам и многим лекарствам. Глиоциты-олегодендроциты - мелкие по размерам, образуют вокруг аксонов у нейронов жироподобный миелиновый футляр, несущий защитную фукнцию. Также нейроглии обеспечивают опорную, трофическую, разграничительную и др. функции.

Другие элементы нервной системы

Некоторые ученые в строение нервных тканей включают и эпендиму - тонкий слой клеток, которые выстилают центральный канал спинного мозга и стенки желудочков мозга. В массе своей эпендима однослойна, состоит из клеток цилиндрической формы, в третьем и четвертом желудочках мозга она имеет несколько слоев. Составляющие эпендиму клетки, эпендимоциты, выполняют секреторную, разграничительную и опорную функции. Их тела вытянуты по форме и имеют на концах «реснички», за счет движения которых производится перемещение спинномозговой жидкости. В третьем желудочке головного мозга находятся особенные эпендимные клетки (танициты), которые, как полагается, передают данные о составе спинномозговой жидкости в специальный отдел гипофиза.

«Бессмертные» клетки с возрастом исчезают

Органы нервной ткани, по широко распространенному определению, включают в себя также стволовые клетки. К ним относят незрелые образования, которые могут становиться клетками разных органов и тканей (потентность), проходить процесс самообновления. По сути, развитие любого многоклеточного организма начинается со стволовой клетки (зиготы), из которой делением и дифференцировкой получаются все остальные виды клеток (у человека их более двухсот двадцати). Зигота представляет собой тотипотентную стволовую клетку, которая дает начало полноценному живому организму за счет трехмерной дифференцировки в единицы экстраэмбриональных и эмбриональных тканей (через 11 дней после оплодотворения у человека). Потомками тотипотентных клеток являются плюрипотетные, которые дают начало элементам зародыша - энтодерме, мезодерме и эктодерме. Из последней как раз и развивается нервная ткань, кожный эпителий, отделы кишечной трубки и органы чувств, поэтому стволовые клетки - это неотъемлемая и важная часть нервной системы.

Стволовых клеток в организме человека очень мало. К примеру, у эмбриона имеется одна такая клетка на 10 тысяч, а у пожилого человека в возрасте около 70 лет - одна на пять-восемь миллионов. Стволовые клетки обладают, помимо вышеуказанной потентности, такими свойствами, как «хоуминг» - способность клетки после введения прибывать в зону повреждения и исправлять сбои, выполняя утраченные функции и сохраняя теломер клетки. В других клетках при делении теломер в части своей утрачивается, а в опухолевых, половых и стволовых есть так называемая телоразмерная активность, в ходе которой концы хромосом автоматически надстраиваются, что дает бесконечную возможность клеточных делений, то есть бессмертие. Стволовые клетки, как своеобразные органы нервной ткани, обладают таким высоким потенциалом за счет избытка информационной рибонуклеиновой кислоты для всех трех тысяч генов, которые участвую в первых этапах развития зародыша.

Основными источниками стволовых клеток выступают эмбрионы, плодный материал после аборта, пуповинная кровь, костный мозг, поэтому с октября 2011 года решением Европейского суда запрещены манипуляции с эмбриональными стволовыми клетками, так как эмбрион признан человеком с момента оплодотворения. В России допущено лечение собственными стволовыми клетками и донорскими для ряда заболеваний.

Вегетативная и соматическая нервная система

Ткани нервной системы пронизывают весь наш организм. От центральной нервной системы (головной, спиной мозг) отходят многочисленные периферические нервы, соединяющие органы тела с ЦНС. Отличием периферической системы от центральной является то, что она не защищена костями и поэтому легче подвергается различным повреждениям. По функциям нервная система подразделяется на вегетативную нервную систему (отвечает за внутреннее состояние человека) и соматическую, которая осуществляет контакты с раздражителями внешней среды, получает сигналы без перехода на подобные волокна, контролируется осознанно.

Вегетативная же дает, скорее, автоматическую, непроизвольную обработку поступающих сигналов. К примеру, симпатический отдел вегетативной системы при надвигающейся опасности повышает давление человека, увеличивает пульс и уровень адреналина. Парасимпатический отдел задействован, когда человек отдыхает, - зрачки у него сужаются, сердцебиение замедляется, кровеносные сосуды расширяются, стимулируется работа половой и пищеварительной систем. Функции нервных тканей энтерального отдела вегетативной нервной системы включают в себя ответственность за все процессы пищеварения. Самым главным органом вегетативной нервной системы является гипотоламус, который связан с эмоциональными реакциями. Стоит помнить, что импульсы в вегетативных нервах могут расходиться на находящиеся рядом волокна такого же типа. Поэтому эмоции способны отчетливо влиять на состояние самых разных органов.

Нервы контролируют мышцы и не только

Нервная и мышечная ткань в теле человека тесно взаимодействуют между собой. Так, основные спинномозговые нервы (отходят от спинного мозга) шейного отдела отвечают за движение мышц у основания шеи (первый нерв), обеспечивают двигательный и сенсорный контроль (2-й и 3-й нерв). Грудобрюшной нерв, продолжающийся от пятого, третьего и второго спинномозговых нервов, управляет диафрагмой, поддерживая процессы самопроизвольного дыхания.

Спинномозговые нервы (с пятого по восьмой) в совокупности с нервом грудинной области создают плечевое нервное сплетение, которое позволяет функционировать рукам и верхней части спины. Строение нервных тканей здесь кажется сложным, однако оно высокоорганизованно и немного различается у разных людей.

В общей сложности у человека 31 пара спинномозговых нервных выходов, восемь из которых находятся в шейном отделе, 12 в грудном, по пять в поясничном и крестцовом отделах и один в копчиковом. Кроме того, выделяют двенадцать черепно-мозговых нервов, идущих от мозгового ствола (отдел мозга, продолжающий спинной мозг). Они отвечают за обоняние, зрение, движение глазного яблока, движение языка, мимику лица и др. Кроме того, десятый нерв здесь отвечает за информацию от груди и живота, а одиннадцатый за работу трапециевидной и кивательной мышц, которые находятся частично вне головы. Из крупных элементов нервной системы стоит упомянуть крестцовое сплетение нервов, поясничное, межреберные нервы, бедренные нервы и симпатический нервный ствол.

Нервная система в животном мире представлена самыми различными образцами

Нервная ткань животных зависит от того, к какому классу относится рассматриваемое живое существо, хотя в основе всего лежат опять же нейроны. В биологической систематике животным считается создание, имеющее в клетках ядро (эукариот), способное к движению и питающееся готовыми органическими соединениями (гетеротрофность). А это значит, что можно рассматривать как нервную систему кита, так и, к примеру, червя. Мозг некоторых из последних, в отличие от человеческого, содержит не более трех сотен нейронов, а остальная система представляет собой комплекс нервов вокруг пищевода. Нервные окончания, выходящие к глазам, в ряде случаев отсутствуют, так как у живущих под землей червей нет зачастую самих глаз.

Вопросы для размышлений

Функции нервных тканей в животном мире ориентированы в основном на то, чтобы их владелец успешно выживал в окружающей среде. При этом природа таит множество загадок. К примеру, зачем пиявке мозг с 32 нервными узлами, каждый из которых сам по себе мини-мозг? Почему у самого маленького в мире паука этот орган занимает до 80% полости всего тела? Встречаются и явные диспропорции в размерах самого животного и частей его нервной системы. Гигантские кальмары располагают главным «органом для размышлений» в виде «пончика» с дыркой посредине и весом около 150 грамм (при общем весе до 1,5 центнеров). И это все может быть предметом размышлений для мозга человека.

Группы клеток и межклеточное вещество, имеющие сходное строение и происхождение, выполняющие общие функции, называются тканями . Каждый орган состоит из нескольких тканей, но одна из них, как правило, преобладает. Межклеточное вещество тоже может быть однородным, как у хряща, но может включать различные структурные образования в виде эластичных лент, нитей, придающих тканям эластичность и упругость.

Нервная ткань реагирует на раздражение вырабатывает нервные импульсы - электрохимические сигналы. С их помощью она регулирует работу клеток, связанных с нею. Нервная ткань обладает главными свойствами возбудимостью и проводимостью : при возбуждение проводит нервные импульсы.

Нервная ткань включает два типа клеток: собственно нервные клетки - нейроны и вспомогательные клетки - нейроглии .
Главная особенность нейронов - высокая возбудимость. Они получают сигналы из внешней и внутренней среды организма, проводят и перерабатывают их, что необходимо для управления работой органов. Нейроны собраны в очень сложные и многочисленные цепи, которые необходимы для получения, переработки, хранения и использования информации.
Нейроглия выполняет ряд вспомогательных функций. Например, питательное вещества из кровеносного сосуда поступают сначала в клетки нейроглии, там перерабатываются и только после этого попадают в нейроны. Клетки нейроглии выполняют и опорную роль, механически поддерживая нейроны.

Нейрон состоит из тела и отростков. В теле нейрона находится ядро с округлыми ядрышками. Отростки нейрона различаются по строению, форме и функциям.

Дендрит - отросток, передающий возбуждение к телу нейрона. Чаще всего у нейрона несколько коротких разветвленных дендритов. Однако бывают нейроны, у которых имеется только один длинный дендрит.

Совокупность клеток и межклеточного вещества, сходных по происхождению, строению и выполняемым функциям, называют тканью . В организме человека выделяют 4 основных группы тканей : эпителиальную, соединительную, мышечную, нервную.

Эпителиальная ткань (эпителий) образует слой клеток, из которых состоят покровы тела и слизистые оболочки всех внутренних органов и полостей организма и некоторые железы. Через эпителиальную ткань происходит обмен веществ между организмом и окружающей средой. В эпителиальной ткани клетки очень близко прилегают друг к другу, межклеточного вещества мало.

Таким образом создается препятствие для проникновения микробов, вредных веществ и надежная защита лежащих под эпителием тканей. В связи с тем, что эпителий постоянно подвергается разнообразным внешним воздействиям, его клетки погибают в больших количествах и заменяются новыми. Смена клеток происходит благодаря способности эпителиальных клеток и быстрому .

Различают несколько видов эпителия – кожный, кишечный, дыхательный.

К производным кожного эпителия относятся ногти и волосы. Кишечный эпителий односложный. Он образует и железы. Это, например, поджелудочная железа, печень, слюнные, потовые железы и др. Выделяемые железами ферменты расщепляют питательные вещества. Продукты расщепления питательных веществ всасываются кишечным эпителием и попадают в кровеносные сосуды. Дыхательные пути выстланы мерцательным эпителием. Его клетки имеют обращенные кнаружи подвижные реснички. С их помощью удаляются из организма попавшие с воздухом твердые частицы.

Соединительная ткань . Особенность соединительной ткани – это сильное развитие межклеточного вещества.

Основными функциями соединительной ткани являются питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и плавающих в нем клеток крови. Эти ткани обеспечивают связь между организмами, перенося различные газы и вещества. Волокнистая и соединительная ткань состоит из клеток, связанных друг с другом межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах. На рыхлую похожа и жировая ткань. Она богата клетками, которые наполнены жиром.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластические и другие волокна. Хрящевой ткани много в суставах, между телами позвонков.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Костная ткань отличается твердостью.

Мышечная ткань . Эта ткань образована мышечными . В их цитоплазме находятся тончайшие нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань.

Поперечно-полосатой ткань называется потому, что ее волокна имеют поперечную исчерченность, представляющую собой чередование светлых и темных участков. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная мышечная ткань состоит из волокон вытянутой формы, достигающих в длину 10–12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной мышцы, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. Сокращение мышц имеет огромное значение. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметра кровеносных сосудов.

Нервная ткань . Структурной единицей нервной ткани является нервная клетка – нейрон.

Нейрон состоит из тела и отростков. Тело нейрона может быть различной формы – овальной, звездчатой, многоугольной. Нейрон имеет одно ядро, располагающееся, как правило, в центре клетки. Большинство нейронов имеют короткие, толстые, сильно ветвящиеся вблизи тела отростки и длинные (до 1,5 м), и тонкие, и ветвящиеся только на самом конце отростки. Длинные отростки нервных клеток образуют нервные волокна. Основными свойствами нейрона является способность возбуждаться и способность проводить это возбуждение по нервным волокнам. В нервной ткани эти свойства особенно хорошо выражены, хотя характерны так же для мышц и желез. Возбуждение предается по нейрону и может передаваться связанным с ним другим нейронам или мышце, вызывая ее сокращение. Значение нервной ткани, образующей нервную систему, огромно. Нервная ткань не только входит в состав организма как его часть, но и обеспечивает объединение функций всех остальных частей организма.

Типы тканей

Ткань - это группа клеток и межклеточное вещество, объединенные общим строением, функцией и происхождением. В теле человека различают четыре основных типа тканей: эпителиальную (покровную), соединительную, мышечную» нервную. Эпителиальная ткань образует покровы тела, железы, выстилает полости внутренних органов. Клетки ткани близко прилегают друг к другу, межклеточного вещества мало. Соз-

дается препятствие для проникновения микробов, вредных веществ, защита лежащих под эпителием тканей. Смена клеток происходит благодаря способности к быстрому размножению.

Соединительная ткань. Ее особенность - сильное развитие межклеточного вещества. Основные функции ткани - питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и клеток крови. Эти ткани обеспечивают связь между органами, перенося вещества и газы. Волокнистая соединительная ткань состоит из клеток,

связанных межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластичные волокна.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Ткань отличается твердостью.

Мышечная ткань образована мышечными волокнами. В их цитоплазме находятся нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная состоит из волокон вытяну

той формы, достигающих в длину 10-12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметров кровеносных сосудов. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим.

Нервная ткань. Структурной единицей нервной ткани является нервная клетка - нейрон. Нейрон состоит из тела и отростков. Основные свойства нейрона - способность возбуждаться и проводить это возбуждение по нервным волокнам. Нервная ткань составляет головной и спинной мозг, обеспечивает объединение функций всех частей организма.

Различные ткани соединяются между собой и образуют органы.

9.3.4. Нервные ткани

Нервная ткань состоит из нервных клеток – нейронов и клеток нейроглии. Кроме того, она содержит рецепторные клетки. Нервные клетки могут возбуждаться и передавать электрические импульсы.

Нейроны состоят из тела клетки диаметром 3–100 мкм, содержащего ядро и органоиды, и цитоплазматических отростков. Короткие отростки, проводящие импульсы к телу клетки, называются дендритами ; более длинные (до нескольких метров) и тонкие отростки, проводящие импульсы от тела клетки к другим клеткам, называются аксонами . Аксоны соединяются с соседними нейронами в синапсах.


Нейроны, передающие импульсы к эффекторам (органам, отвечающим на раздражения), называют моторными; нейроны, передающие импульсы в центральную нервную систему, называют сенсорными. Иногда сенсорные и моторные нейроны связаны между собой при помощи вставочных (промежуточных) нейронов.

Рисунок 9.3.4.4.

Строение сенсорного и моторного нервов.

Пучки нервных волокон собраны в нервы . Нервы покрыты оболочкой из соединительной ткани – эпиневрием . Собственная оболочка покрывает и каждое волокно в отдельности. Как и нейроны, нервы бывают сенсорными (афферентными) и моторными (эфферентными). Встречаются также смешанные нервы, передающие импульсы в обоих направлениях. Нервные волокна целиком или полностью окружены шванновскими клетками . Между миелиновыми оболочками шванновских клеток имеются разрывы, называемые перехватами Ранвье .

Клетки нейроглии сосредоточены в центральной нервной системе, где их количество в десять раз превышает количество нейронов. Они заполняют пространство между нейронами, обеспечивая их питательными веществами. Возможно, клетки нейролгии участвуют в сохранении информации в форме РНК-кодов. При повреждении клетки нейролгии активно делятся, образуя на месте повреждения рубец; клетки нейролгии другого типа превращаются в фагоциты и защищают организм от вирусов и бактерий.

Сигналы передаются по нервным клеткам в виде электрических импульсов. Электрофизиологические исследования показали, что мембрана аксона с внутренней стороны заряжена отрицательно по отношению к наружной стороне, и разность потенциалов составляет примерно –65 мВ. Этот потенциал, так называемый потенциал покоя , обусловлен разностью концентраций ионов калия и натрия по разные стороны мембраны.

При стимуляции аксона электрическим током потенциал на внутренней стороне мембраны увеличивается до +40 мВ. Потенциал действия возникает за счет кратковременного увеличения проницаемости мембраны аксона для ионов натрия и входа последних в аксон (около 10 –6 % от общего числа ионов Na + в клетке). Примерно через 0,5 мс повышается проницаемость мембраны для ионов калия; они выходят из аксона, восстанавливая исходный потенциал.

Нервные импульсы пробегают по аксонам в виде незатухающей волны деполяризации. В течение 1 мс после импульса аксон возвращается в исходное состояние и не способен передавать импульсы. Ещё в течение 5–10 мс аксон может передавать только сильные импульсы. Скорость проведения сигнала зависит от толщины аксона: в тонких аксонах (до 0,1 мм) она составляет 0,5 м/с, в то время, как в гигантских аксонах кальмаров диаметром 1 мм может достигать 100 м/с. У позвоночных друг за другом возбуждаются не соседние участки аксона, а перехваты Ранвье; импульс перескакивает от одного перехвата к другому и идёт в целом быстрее (до 120 м/с), чем серия коротких токов по немиелиновому волокну. Повышение температуры увеличивает скорость прохождения нервных импульсов.

Амплитуда нервных импульсов не может изменяться, и для кодирования инфомации используется только их частота. Чем больше воздействующая сила, тем чаще следуют друг за другом импульсы.

Передача информации от одного нейрона к другому происходит в синапсах . Обычно посредством синапсов связаны между собой аксон одного нейрона и дендриты или тело другого. Синапсами связаны с нейронами также окончания мышечных волокон. Число синапсов очень велико: некоторые клетки головного мозга могут иметь до 10 000 синапсов.

По большинству синапсов сигнал передаётся химическим путём. Нервные окончания разделены между собой синаптической щелью шириной около 20 нм. Нервные окончания имеют утолщения, называемые синаптическими бляшками ; цитоплазма этих утолщений содержит многочисленные синаптические пузырьки диаметром около 50 нм, внутри которых находится медиатор – вещество, с помощью которого нервный сигнал передаётся через синапс. Прибытие нервного импульса вызывает слияние пузырька с мембраной и выход медиатора из клетки. Примерно через 0,5 мс молекулы медиатора попадают на мембрану второй нервной клетки, где связываются с молекулами рецептора и передают сигнал дальше.


Передача информации в химических синапсах происходит в одном направлении. Специальный механизм суммации позволяет отфильтровывать слабые фоновые импульсы, прежде чем они поступят, например, в мозг. Передача импульсов может также затормаживаться (например, в результате воздействия на синапс сигналов, приходящих от других нейронов). Некоторые химические вещества влияют на синапсы, вызывая ту или иную реакцию. После непрерывной работы запасы медиатора истощаются, и синапс временно перестаёт передавать сигнал.

Через некоторые синапсы передача происходит электрическим путём: ширина синаптической щели составляет всего 2 нм, и импульсы проходят через синапсы без задержки.

Мышечная ткань состоит из высокоспециализированных сократительных волокон. В организмах высших животных она составляет до 40 % массы тела.

Различают три типа мышц. Поперечно-полосатые (их также называют скелетными) мышцы являются основой двигательной системы организма. Очень длинные многоядерные клетки-волокна связаны друг с другом соединительной тканью, содержащей в себе множество кровеносных сосудов. Данный тип мышц отличают мощные и быстрые сокращения; в сочетании с коротким рефрактерным периодом это приводит к быстрой утомляемости. Активность поперечно-полосатых мышц определяется деятельностью головного и спинного мозга.

Гладкие (непроизвольные) мышцы образуют стенки дыхательных путей, кровеносных сосудов, пищеварительной и мочеполовой систем. Их отличают относительно медленные ритмичные сокращения; активность зависит от автономной нервной системы. Одноядерные клетки гладких мышц собраны в пучки или пласты.

Наконец, клетки сердечной мышцы разветвляются на концах и соединяются между собой при помощи поверхностных отростков – вставочных дисков. Клетки содержат несколько ядер и большое количество крупных митохондрий . Как следует из названия, сердечная мышца встречается только в стенке сердца.

Нервная ткань (textus nervosus) - совокупность клеточных элементов, формирующих органы центральной и периферической нервной системы. Обладая свойством раздражимости, нервная ткань обеспечивает получение, переработку и хранение информации из внешней и внутренней среды, регуляцию и координацию деятельности всех частей организма. В составе нервной ткани имеются две разновидности клеток: нейроны (нейроциты) и глиальные клетки (глиоциты). Первый тип клеток организует сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляет генерирование и распространение нервных импульсов. Второй тип клеток выполняет вспомогательные функции, обеспечивая жизнедеятельность нейронов. Нейроны и глиальные клетки образуют глионевральные структурно-функциональные комплексы.

Нервная ткань имеет эктодермальное происхождение. Она развивается из нервной трубки и двух ганглиозных пластинок, которые возникают из дорсальной эктодермы в процессе ее погружения (нейруляция).
Из клеток нервной трубки образуется нервная ткань, формирующая органы ц.н.с. - головной и спинной мозг с их эфферентными нервами, из ганглиозных пластинок - нервная ткань различных частей периферической нервной системы. Клетки нервной трубки и ганглиозной пластинки по мере деления и миграции дифференцируются в двух направлениях: одни из них становятся крупными отростчатыми (нейробласты) и превращаются в нейроциты, другие остаются мелкими (спонгиобласты) и развиваются в глиоциты.

Основу нервной ткани составляют нейроны. Вспомогательные клетки нервной ткани (глиоциты) различают по структурно-функциональным особенностям. В центральной нервной системе имеются следующие виды глиоцитов: эпендимоциты, астроциты, олигодендроциты; в периферической - глиоциты ганглиев, концевые глиоциты и нейролеммоциты (шванновские клетки). Эпендимоциты образуют эпендиму - покровный слой, выстилающий полости мозговых желудочков и центральный канал спинного мозга. Эти клетки имеют отношение к метаболизму и секреции некоторых компонентов цереброспинальной жидкости.

Астроциты входят в состав ткани серого и белого вещества головного и спинного мозга; имеют звездчатую форму, многочисленные отростки, распластанные терминали которых участвуют в создании глиозных мембран.
На поверхности мозга и под эпендимой они формируют наружную и внутреннюю пограничные глиозные мембраны. Вокруг всех кровеносных сосудов, проходящих в мозговой ткани, астроциты образуют периваскулярную глиозную мембрану. Вместе с компонентами самой стенки кровеносного сосуда эта глиозная мембрана создает гематоэнцефалический барьер - структурно-функциональную границу между кровью и нервной тканью.

Олигодендроциты в сером веществе мозга являются клетками-саттелитами нейронов; в белом веществе они образуют оболочки вокруг их аксонов. Клетки периферической глии создают барьеры вокруг нейронов периферической нервной системы. Глиоциты ганглиев (клетки-сателлиты) окружают их перикарион, а нейролеммоциты сопровождают отростки и участвуют в образовании нервных волокон.

Нервные волокна - пути распространения нервного импульса; они формируют белое вещество головного и спинного мозга и периферические нервы. В нервном волокне имеются центральная часть, образоваиная аксоном нервной клетки, и периферическая - оболочечные глиальные клетки, или леммоциты.
В ц.н.с. роль леммоцитов играют олигодендроциты, а в периферической нервной системе - нейролеммоциты. Аксон нервного волокна как часть нервной клетки имеет наружную мембрану (аксолемму) и содержит органеллы: нейрофиламенты, микротрубочки, а также митохондрии, лизосомы, незернистую эндоплазматическую сеть. По аксону от тела нейрона осуществляется аксонный транспорт белков органелл. В аксонном транспорте различают медленный поток (со скоростью около 1 мм в сутки), обеспечивающий рост аксонов, и быстрый поток (около 100 мм в сутки), имеющий отношение к синаптической функции. Транспортные процессы в осевом цилиндре связывают с системой микротрубочек.

В зависимости от способа организации оболочки вокруг аксона различают миелиновые (мякотные) и безмиелиновые (безмякотные) нервные волокна. В последних аксон погружен в цитоплазму леммоцита, поэтому окружен только его двойной цитомембраной. Безмякотные волокна тонкие (0,3-1,5 мкм), характеризуются низкой скоростью проведения импульса (0,5-2,5 м/с).
Такие волокна типичны для вегетативной нервной системы. В миелиновых (мякотных) нервных волокнах цитомембрана леммоцита вследствие многократного закручивания вокруг аксона (миелогенез) образует многослойную структуру из чередующихся билипидных и гликопротеиновых слоев. Этот слоистый, богатый липидами материал называется миелином. Миелиновые нервные волокна различаются по толщине миелиновой оболочки (от 1 до 20 мкм), что влияет на скорость распространения импульса (от 3 до 120 м/с). Миелиновое покрытие по длине волокна имеет сегментарное строение, зависящее от протяженности леммоцита (от 0,2 до 1,5 мкм). На границе двух леммоцитов имеются участки безмиелиновых перетяжек - узлы нервного волокна (перехваты Ранвье). Поэтому распространение импульса в миелиновых волокнах носит сальтаторный (скачкообразный) характер. Миелиновые волокна типичны для соматических нервов, а также проводящих путей головного и спинного мозга. Ведущее значение аксона как части нейрона в структурно-функциональной организации нервного волокна проявляется при его повреждении. Если погибает даже небольшой участок, то нервное волокно гибнет на всем его дальнейшем протяжении, т.к. оказывается отделенным от тела клетки, от которого зависит его существование. Гибель дистального участка аксона сопровождается дегенерацией и распадом его миелиновой оболочки (валлеровское перерождение). При этом макрофаги поглощают распадающийся миелин и остатки аксона, а затем удаляются из очага. Дальнейший процесс восстановления связан с реакцией нейролеммоцитов, которые начинают пролиферировать с проксимального конца поврежденного нервного волокна, образуя трубки. Аксоны врастают в эти трубки со скоростью 1-3 мм в сутки. Этот процесс характерен для периферических нервов после их сдавления и перерезки.

Межнейронная связь осуществляется через их отростки с помощью межклеточных контактов - синапсов.

Нервные волокна оканчиваются не только на нейронах, но и на клетках всех других тканей, особенно мышечных и эпителиальных, образуя эфферентные нервные окончания, или нейроэффекторные синапсы. Особенно многочисленными и сложно развитыми являются двигательные нервные окончания на поперечнополосатой мускулатуре - моторные бляшки.

Воспринимающие (рецепторные) нервные окончания - концевые аппараты дендритов чувствительных нейронов - генерируют нервный импульс под влиянием различных раздражителей из внешней и внутренней среды. По своим структурным особенностям рецепторные нервные окончания могут быть «свободными», т.е. расположенными непосредственно между клетками иннервируемой ткани; «несвободными» и даже инкапсулированными, т.с. окруженными специальными рецепторными клетками эпителиального или глиального характера, а также соединительнотканной капсулой.