Лекция: Возрастные особенности эндокринной системы. Гормоны, их свойства

Эндокринная система организма человека представлена железами внутренней секреции, вырабатывающих определенные соединения (гормоны) и выделяют их непосредственно (без протоков, выводящих) в кровь. В этом эндокринные железы отличаются от других (экзокринных) желез, которые продукт своей деятельности выделяют лишь во внешнюю среду через специальные протоки или без них. Железами внешней секреции является, например, слюнные, желудочные, потовые железы и др. В организме существуют и смешанные железы, которые одновременно являются экзокринными и эндокринными. К смешанным желез относятся поджелудочная и половые железы.

Гормоны эндокринных желез с током крови разносятся по всему организму и выполняют важные регулирующие функции: влияют на обмен веществ, регулируют клеточную активность, рост и развитие организма, обусловливают смену возрастных периодов, влияют на работу органов дыхания, кровообращения, пищеварения, выделения и размножения. Под действием и контролем гормонов (в оптимальных внешних условиях) реализуется также вся генетическая программа жизни человека.

Железы с топографией расположены в разных местах организма: в области головы находятся гипофиз и эпифиз, в области шеи и грудной клетки расположены щитовидная, пара щитовидная и вилочковая (тимус) железы. В области живота находятся надпочечники и поджелудочная железы, в области малого таза - половые железы. В разных частях тела, преимущественно по ходу крупных кровеносных сосудов, расположены небольшие аналоги эндокринных желез - параганглии.

Функции и строение желез внутренней секреции значительно меняются с возрастом.

Гипофиз считается железой всех желез так как своими гормонами влияет на работу многих из них. Эта железа расположена у основания головного мозга в углублении турецкого седла клиновидной (основной) кости черепа. V новорожденного масса гипофиза 0,1-0,2 г, в 10 лет он достигает массы 0,3 г, а у взрослых - 0,7-0,9 г. Во время беременности у женщин масса гипофиза может достигать 1,65 г. Железу условно делят на три части: переднюю (аденогипофиз), заднюю (неґирогипофиз) и промежуточную. В области аденогипофиза и промежуточного отдела гипофиза синтезируется большинство гормонов железы, а именно соматотропный гормон (гормон роста), а также адренокортикотропного (АКТА), тиреотропные (ТГГ), гонадотропные (ГТГ), лютеотропный (ЛТГ) гормоны и пролактин. В области нейрогипофиза приобретают активной формы гормоны гипоталамуса: окситоцин, вазопрессин, меланотропин и Мизин-фактор.

Гипофиз тесно связан нейронными структурами с гипоталамусом промежуточного мозга, благодаря чему осуществляется взаимосвязь и координация нервной и эндокринной регулирующих систем. Гипоталамно - гипофизарный нервный путь (канатик, соединяющий гипофиз с гипоталамусом) насчитывает до 100 000 нервных отростков нейронов гипоталамуса, которые способны создавать нейросекрет (медиатор) возбуждающего или тормозного характера. Отростки нейронов гипоталамуса имеют конечные окончания (синапсы) на поверхности кровеносных капилляров задней доли гипофиза (нейрогипофиза). Попадая в кровь, медиатор далее транспортируется в переднюю долю гипофиза (аденогипофиз). Кровеносные сосуды на уровне аденогипофиза снова разделяются на капилляры, оплетает островки секреторных клеток и, таким образом, через кровь оказывают влияние на активность образования гормонов (ускоряют или замедляют). По схеме, которая описана, и осуществляется взаимосвязь в работе нервной и эндокринной регулирующих систем. Помимо связи с гипоталамусом, в гипофиза поступают отростки нейронов от серого бугорка пидьзгирнои части больших полушарий, от клеток таламуса, что на дне 111 желудочка стволовой части головного мозга и от солнечного сплетения вегетативной нервной системы, которые также способны влиять на активность образования гормонов гипофиза.

Основным гормоном гипофиза является соматотропный гормон (СТГ) или гормон роста, который регулирует рост костей, увеличение длины и массы тела. При недостаточном количестве соматотропного гормона (гипофункция железы) наблюдается карликовость (длина тела до 90-100 ом., Малая масса тела, хотя умственное развитие может проходить нормально). Избыток соматотропного гормона в детском возрасте (гиперфункции железы) приводит к гипофизарного гигантизма (длина тела может достигать 2,5 и более метров, умственное развитие зачастую страдает). Гипофиз вырабатывает, как указывалось выше, АКТГ (АКТГ), гонадотропные гормоны (ГТГ) и тиреотропного гормона (ТГТ). Большее или меньшее количество указанных выше гормонов (урегулированных от нервной системы), через кровь влияет на активность, соответственно, надпочечников, половых желез и щитовидной железы, меняя, в свою очередь, их гормональную активность, а поэтому и воздействуя на активность тех процессов, которыми регулируются. В гипофизе также производятся меланофорний гормон, влияющий на цвет кожи, волос и на другие структуры организма, вазопрессин, регулирует кровяное давление и водный обмен и окситоцин, который влияет на процессы выделения молока, тонус стенок матки и др.

Гормоны гипофиза влияют также на высшую нервную деятельность человека. В период полового созревания особенно активны гонадотропные гормоны гипофиза, которые влияют на развитие половых желез. Появление в крови половых гормонов в свою очередь тормозит активность гипофиза (обратная связь). Функция гипофиза стабилизируется в после пубертатный период (в 16 - 18 лет). Если активность соматотропного гормона сохраняется и после завершения роста организма (после 20 - 24 лет), то развивается акромегалия, когда непропорционально большими становятся отдельные части тела, в которых еще не завершились процессы окостенения (например, значительно увеличиваются кисти рук, стопы ног, голова, уши и др. части тела). За период роста ребенка гипофиз увеличивается по массе в два раза (с 0,3 до 0,7 г).

Эпифиз (масса к ОД г) наиболее активно функционирует до 7 лет, а дальше перерождается в неактивную форму. Эпифиз считается железой детства, так как эта железа вырабатывает гормон гонадолиберина, тормозящий до определенного времени развитие половых желез. Кроме этого эпифиз регулирует водно-солевой обмен, образуя вещества, подобные гормонам: мелатонин, серотонин, норадреналин, гистамина. Существует определенная цикличность образования гормонов эпифиза в течение суток: ночью синтезируется мелатонин, а ночью - серотонин. Благодаря этому считается, что эпифиз выполняет роль своеобразного хронометра организма, регулирует смену жизненных циклов, а также обеспечивает соотношение собственных биоритмов человека с ритмами окружающей среды.

Щитовидная железа (масса до 30 граммов) расположена впереди гортани на шее. Основными гормонами этой железы является тироксина, три-йодтиронин которые влияют на обмен воды и минеральных веществ, на ход окислительных процессов, на процессы сгорания жира, на рост, массу тела, на физическое и умственное развитие человека. Наиболее активно железа функционирует в 5-7 и в 13-15 лет. Железа производит также гормон Тирокальцитонин, который регулирует обмен кальция и фосфора в костях (тормозит их вымывание из костей и уменьшает количество кальция в крови). При гипофункции щитовидной железы дети задерживаются в росте, у них выпадают волосы, страдают зубы, нарушается психика и умственное развитие (развивается заболевание микседема), теряется разум (развивается кретинизм). При гиперфункции щитовидной железы возникает базедова болезнь признаками которой является увеличение щитовидной железы, изъятые глаза, резкое похудение и ряд вегетативных нарушений (повышенное сердцебиение, потливость и т.д.). Болезнь также сопровождается повышением раздражительности, утомляемости, снижением работоспособности и др.

Паращитовидные железы (масса до 0,5 г) расположены по заду щитовидной железы в виде небольших четырех судеб. Гормоном этих желез является паратгормон, который поддерживает количество кальция в крови на постоянном уровне (даже, если надо, за счет вымывания его из костей), а вместе с витамином Д влияет на обмен кальция и фосфора в костях, а именно, способствует накоплению этих веществ в костной ткани. Гиперфункция железы приводит к сверхсильной минерализации костей и окостенения, а также к повышенной возбудимости полушарий мозга. При гипофункции наблюдается тетания (судороги) и происходит смягчение костей.

Вилочковая железа (тимус), как и костный мозг, является центральным органом иммуногенеза. Отдельные стволовые клетки красного костного мозга попадают в тимус с током крови и в структурах железы проходят этапы созревания и дифференциации, превращаясь в Т-лимфоциты (тимус - зависимые лимфоциты). Последние снова попадают в кровеносное русло и разносятся по организму и создают тимус-зависимые зоны в периферийных органах иммуногенеза (селезенке, лимфатических узлах и др.). Тимус создает также ряд веществ (тимозин, тимопоэтина, тимусний гуморальный фактор и др.), Которые, скорее всего, влияют на процессы дифференциации Г-лимфоцитов. Процессы иммуногенеза подробно описаны в разделе 4.9.

Тимус расположенный в грудной костью и имеет две судьбы, покрытые соединительной тканью. Строма (тело) тимуса имеет ретикулярную сетчатку, в петлях которой расположены лимфоциты тимуса (тимоциты) и плазматические клетки (лейкоциты, макрофаги и др.). Тело железы условно делится на более темную (пробковый) и мозговую части. На границе коркового и мозгового частей выделяют крупные клетки с высокой активностью к делению (лимфобласты), которые считаются ростков точками, потому что именно сюда попадают на созревание стволовые клетки.

Вилочковая железа активно действует до 13-15 лет - в это время она имеет наибольшую массу (37-39г). После пубертатного периода масса тимуса постепенно уменьшается: в 20 лет она составляет в среднем 25 г, в 21-35 лет - 22 г (В. М. Жолобов, 1963), а в 50-90 лет - всего 13 г (W. Kroeman , 1976). Полностью лимфоидная ткань тимуса не исчезает до старости, но большая ее часть замещается на соединительную (жировую) ткань: если у новорожденного ребенка соединительная ткань составляет до 7% массы железы, то в 20 лет это достигает 40%, а после 50 лет - 90 %. Вилочковая железа способна также к сроку сдерживать развитие половых желез у детей, а сами гормоны половых желез в свою очередь способны вызвать редукцию тимуса.

Надпочечники расположены над почками и имеют массу при рождении ребенка 6-8 г, а у взрослых - до 15 г каждая. Наиболее активно эти железы растут в период полового созревания, а окончательно созревают в 20-25 лет. Каждая надпочечников имеет два слоя тканей внешний (пробковый) и внутренний (мозговой). Эти железы вырабатывают много гормонов, регулирующих различные процессы в организме. В коре желез образуются кортикостероиды: минералокортикоиды и глюкокортикоиды, регулирующих белковый, углеводный, минеральный и водно - солевой обмен, влияют на скорость размножения клеток, регулируют активизацию обмена веществ при мышечной деятельности и регулируют состав форменных элементов крови (лейкоцитов). Производятся также гонадокортикощы (аналоги андрогенов и эстрогенов), влияющие на активность половой функции и на развитие вторичных половых признаков (особенно в детском и в пожилом возрасте). В мозговой ткани надпочечников образуются гормоны адреналин и норадреналин, которые способны активизировать работу всего организма (аналогично действию симпатического отдела вегетативной нервной системы). Эти гормоны имеют исключительно важное значение для мобилизации физических резервов организма во время стрессов, при исполнении физических упражнений, особенно в период тяжелой работы, напряженных спортивных тренировок или соревнований. При чрезмерных волнениях во время спортивных выступлений у детей иногда может происходить ослабление мышц, угнетение рефлексов поддержки положения тела, по причине перевозбуждения симпатической нервной системы, а также вследствие чрезмерного выброса адреналина в кровь. В этих обстоятельствах может также наблюдаться усиление пластического тонуса мышц с последующим оцепенением этих мышц или даже оцепенение пространственной позы (явление каталепсии).

Важно баланс образования ГКС и минералокортикоидов. Когда недостаточно образуется глюкокортикоидов, то гормональный баланс смещается в сторону минералокортикоидов и это, между прочим, может снижать противодействие организма что к развитию ревматических воспалений в сердце и суставах, к развитию бронхиальной астмы. Избыток глюкокортикоидов подавляет воспалительные процессы, но, если это превышение значительно, то может способствовать росту кровяного давления, содержания сахара в крови (развития так называемого стероидного диабета) и даже может способствовать разрушению тканей сердечной мышцы, возникновению язвы стенок желудка и др.

Поджелудочная железа. Эта железа, как и половые железы, считается смешанной, так как выполняет экзогенную (производство пищеварительных ферментов) и эндогенную функции. Как эндогенная, поджелудочная железа производит в основном гормоны глюкагон и инсулин, которые влияют на углеводный обмен в организме. Инсулин уменьшает содержание сахара в крови, стимулирует синтез гликогена в печени и мышцах, способствует усвоению мышцами глюкозы, задерживает воду в тканях, активизирует синтез белков и уменьшает образование углеводов из белков и жиров. Инсулин также тормозит образование гормона глюкагона. Роль глюкагона противоположно действию инсулина, а именно: глюкагон повышает содержание сахара в крови, в том числе за счет перехода гликогена тканей в глюкозу. При гипофункции железы уменьшается образование инсулина и это может вызвать опасную болезнь - сахарный диабет. Развитие функции поджелудочной железы продолжается примерно до 12 лет жизни детей и, таким образом, врожденные нарушения в ее работе чаще всего проявляются именно в этот период. Среди других гормонов поджелудочной железы следует выделить липокаин (способствует утилизации жиров), ваготонин (активизирует парасимпатический отдел вегетативной нервной системы, стимулирует образование эритроцитов крови), центропеин (улучшает применение клетками организма кислорода).

В организме человека в разных частях тела могут встречаться отдельные островки железистых клеток, образующих аналоги эндокринных желез и называются параганглии. Эти железы обычно образуют гормоны местного назначения, влияющие на ход тех или иных функциональных процессов. Например, ентероензимни клетки стенок желудка вырабатывают гормоны (инкреты) Гастрин, секретин, холецистокинин, регулирующих процессы переваривания пищи; эндокард сердца продуцирует гормон атриопептид, действующий снижая на объем и давление крови. В стенках почек образуются гормоны эритропоэтин (стимулирует продукцию эритроцитов) и ренин (действует на кровяное давление и влияет на обмен воды и солей).

Половые железы как в женском так и в мужском организме являются смешанными железами, потому способны производить половые гормоны (эндогенная функция) и половые клетки (экзогенная функция). С деятельностью половых желез связана одна из важнейших функций организма - физиология пола и размножения.

Размножение является одной из важнейших качеств живой материи, которая предназначена обеспечить сохранение и приумножение жизни на земле К сложной функции размножения у людей относятся следующие процессы:

Образование половых гормонов и половых клеток;

Половой акт, ведет к оплодотворению;

Развитие зародыша и плода в утробе матери;

После родильное выращивания ребенка.

Регуляцию прохождения и чередование указанных процессов обеспечивают гонадотропные гормоны гипофиза, половые гормоны, а также гормоны надпочечников. Главным условием реализации функции размножения является наличие половых желез и половых органов мужского и женского типа, достаточно развитые, нормально функционируют и здоровы. Эти железы и органы обусловливают первичные половые признаки. Развитие мужских и женских желез и органов размножения сопровождается значительными общими изменениями во всем организме и приводит к проявлению вторичных половых признаков.

Половые железы закладываются еще во внутриутробном периоде, формируются в течение всего периода детства и определяют половое развитие ребенка. Половые железы относятся к смешанным желез. их внешняя секреция заключается в образовании и выделении наружу половых или зародышевых клеток, а именно сперматозоидов (у мужчин) и яйцеклеток (у женщин). Внутренняя же секреция половых желез связана с образованием и выделением в кровь половых гормонов: мужских - андрогенов и женских - эстрогенов. По функциональному значению мужские и женские половые гормоны существенно отличаются друг от друга, хотя в их основе лежат близкие химические структуры. Кроме того следует отметить, что мужские и женские половые гормоны постоянно образуются в половых железах как мужчин, так и женщин, а решающее значение для определения пола имеет только их количественное соотношение. У мужчин половые железы в сутки образуют от 3 до 10 мкг1 андрогенов и 5-15 мкг эстрогенов у женщин соответственно от 3 до 10 мкг андрогенов, но 18-36 мкг эстрогенов.

Роль половых гормонов легко проверить при повреждении или удалении половых желез, называется кастрацией. Если кастрация проведена в детском возрасте, то половое созревание и развитие вторичных половых признаков вообще не происходит, а половое влечение позже даже не появляется. Кастрация, проведенной после полового созревания, приводит к обратному развитию первичных половых признаков и к частичной потере вторичных половых признаков (меняется характер оволосения, деградируют молочные железы и т.д.). Если в раннем возрасте вырабатывается недостаточное количество гормона эпифиза ганадолиберину (что до определенного периода должен сдерживать половое созревание детей), или имеет место гиперфункция половых желез, то происходит преждевременное половое созревание, быстрый рост тела и ускоренное развитие вторичных половых признаков. Нарушение функции половых желез может приводить также к ряду заболеваний, среди которых выделяют: бесплодие евнухоидизм (недостаточность у мужчин мужских половых гормонов) интерсексуальность (появление в мужском организме признаков женского организма и наоборот); гермафродизм (одновременное развитие в одном организме мужских и женских половых желез и соответствующих первичных и вторичных половых признаков).

Половая система мужского и женского организма имеет внутренние и внешние половые органы.

У мужчин к внутренним половым органам относятся: половые железы (семенники), представленных парными яичками с придатка яичка; семь "явивидни пролива; семь пьяные пузырьки (пухирьци) пидмихурова железа (простата) луковичное железа и семявыносящих (мочевой) канал.

Наружными половыми органами мужского организма является половой член и мошонка. Последняя масс форму мешочка - термоса, внутри которого расположены яички и придатки яичек и предназначена поддерживать в своей полости температуру ниже чем в организме на 1,5-3 ° С (необходимое условие сперматогенеза).

В яичках развиваются половые клетки (сперматозоиды) и образуются (в так называемых клетках Лейдига) половые гормоны (андрогены), к числу которых относятся: тестостерон (синтезируется с ацетил холестерина), андростандион (изомер тестостерона, но в б раз менее активен от него) , андростерон (имеет свойства мужских и женских половых гормонов, в 100 раз менее активен тестостерона) и эстрогены. Тестостерон действует на обмен веществ, обусловливает развитие вторичных половых признаков и тормозит действие эстрогенов.

Развитие половых клеток у мужчин (сперматогенез) идет непрерывный, но для каждой отдельной половой клетки можно условно выделить мужской половой цикл, происходит в семенниках по схеме: сперматогоний, сперматоциты, сперматиды, сперматозоиды (последние созревают в придатках яичек в течение 62- 64 суток). Образование сперматозоидов начинается с периода полового созревания (15-17 лет) и заканчивается с атрофией половых желез в возрасте 50-60 лет, когда наступает мужской климактерический период. Если учесть, что 1 мм 3 семенной жидкости (спермы) содержит до 100 млн. Сперматозоидов, а лишь за один половой акт выделяется до 3 мм 3 спермы, то понятно, что за весь период жизни у мужчин образуется астрономическое количество половых клеток. Каждый сперматозоид человека имеет головку с акросомой, шейку и хвостик (жгутик) и несет одинарный (гаплоидный) набор хромосом (генетической информации). Сперматозоиды с помощью жгутика способны к самостоятельному движению со скоростью до 3,5 мм / сек. (за час могут пройти путь до 20 см!). В полости половых органов женщины сперматозоиды сохраняют способность к движению в течение 6-7 дней. Акросома содержит фермент гиалуронидазу, который способен розчинюваты оболочку женской яйцеклетки, нужно для оплодотворения.

Каждый придаток яичка представляет собой накопление завитых канальцев длиной до 6 м, двигаясь по которым в течение 62-64 дней каждый из сперматозоидов проходит окончательное формирование и созревание. Семявыводящие пролива имеют длину до 15-20 см и соединяют придатка яичка с семенной пузырьками (пузырями), расположенными под нижним краем мочевого пузыря и где накапливаются сперматозоиды к их выбрасывания из организма. Стенки семенных пузырьков производят белковый секрет и слизь, является растворителем для сперматозоидов и вместе с остальными образует семенную жидкость - сперму и служит для самих половых клеток источником питания. Пидмихурова железа (простата) является залозисто- мышечным образованием, по своей функции напоминает трехходовой кран, который способен переключать мочевыделительную или семявыносящий пролива на общий мочевой канал полового члена. Пидмихурова железа образует также секрет простогландинов, что активизирует сперматозоиды спермы и стимулирует возбуждение половых органов во время полового акта. Луковичное железа вырабатывает секрет, что смазывает мочевой канал и облегчает выброс спермы во время полового акта.

К внутришних половых органов женщин относятся: парные половые железы (яичники) маточные трубы; матка; и влагалище. Наружными половыми органами женского организма является переддвер "я влагалища, клитор, большие и малые срамные губы и лобок.

В яичнике развиваются половые клетки (яйцеклетки) и образуются половые гормоны (эстрогены), к числу которых относятся: эстрон, эстриол, эстрадиол и андрогены (последние к определенному периоду отдаляет начало менструации у женщин). Сам яичник парное образование, расположенный в полости малого таза и имеет корковый и мозговой слои. В корковом слое находятся фолликулы (пузырьки) с недозрелыми яйцеклетками. В обоих яичниках здоровой женщины насчитывается до 600 тыс. Первичных фолликулов, однако за весь период половой активности только в 200-550 фолликулах созревают способны к оплодотворению яйцеклетки. В мозговом слое размещено большое количество кровеносных сосудов и нервов.

Женские половые гормоны являются производными холистерину и дезоксикор-тикостерону и синтезируются в зернистом слое фолликулов. Кроме этого, в желтых телах яичника, образующихся на месте выхода из фолликула зрелой яйцеклетки, образуется гормон беременности - прогестерон. Фолликулярные гормоны влияют на развитие половых органов и вторичных половых признаков. их действием обусловлена периодическое появление менструации, а также развитие и рост молочных желез. Прогестерон Осуществляет влияние на процессы, связанные с наступлением и нормальным протеканием беременности. Если в начале беременности разрушить желтое тело, то беременность обрывается и плод удаляется из организма. Под влиянием прогестерона стенки матки разрыхляются и готовящихся к поступлению оплодотворенной яйцеклетки, которая затем может легко закрепиться в ее взрыхленной стенке. Наличие прогестерона в крови (при наступлении беременности) препятствует дальнейшему созреванию фолликулов, а следовательно, и созреванию новой яйцеклетки. В период беременности прогестерон также активизирует дополнительный рост молочных желез, способствует подготовке организма к кормлению будущего ребенка. Действуя на мышцы стенок матки, прогестерон препятствует их сокращению, что имеет важное значение для нормального протекания беременности, поскольку сокращение стенок матки, вызванное различными причинами (например, гормоном задней доли гипофиза окситоцином ведет к прекращению беременности и выкидышу.

Развитие половых клеток у женщин (оогенез) называется женского полового цикла и представляет собой процесс периодического созревания и выхода в матку способной к оплодотворению яйцеклетки. Такие периодические циклы у здоровой женщины в период половой активности (с 13-15 лет до 45-55 лет) повторяются через каждые 24-28 дней. Женский половой цикл (овуляция) делится на следующие периоды:

Передовуляцийний, во время которого в организме женщины идет подготовка к беременности. Этот процесс запускается интенсивным образованием фолликуло гормонов гипофиза, действующих на железы яичника, вшивая повышенное образование эстрогенов. Эстрогены в свою очередь вызывают увеличение размера матки, способствуют разрастанию ее слизистой (миометрия), запускают периодические сокращения маточных труб, а самое главное, стимулируют созревание одного или нескольких фолликулов, наиболее крупный и зрелый из которых получает название граафова пузырька (прозрачного образования, наполненного жидкостью). Созревания фолликула продолжается в среднем 28 дней и к концу этого срока он перемещается к поверхности яичника. За счет увеличения жидкости внутри граафова пузырька, стенки его не выдерживают, лопаются и из него созревшая яйцеклетка током жидкости выбрасывается в полость живота - начинается овуляция.

Овуляцийцний период характеризуется тем, что b полости живота яйцеклетка током жидкости направляется в маточную (фаллопиевых) трубу (маточная) и сначала начинает быстро двигаться вдоль нее под действием сокращений мышц стенок и мерцание ворсинок эпителия (этот процесс управляется повышенным количеством эстрогенов). В этот момент на месте граафова пузырька лопнувшего образуется желтое тело, которое начинает интенсивно вырабатывать гормон прогестерон. Насыщение крови прогестероном начинает тормозить действие эстрогенов, от чего падает активность яйцеводов и яйцеклетка начинает двигаться замедленно и дальше весь путь к матке (12-16 см) проходит примерно за 3 суток. Если в маточной трубе яйцеклетка встретится со сперматозоидами то происходит ЕЕ оплодотворения и такое оплодотворенное яйцо при попадании в матку закрепляется (имплантируется) в ее стенке -наступае беременность. В этом случае половой цикл прерывается, желтое тело сохраняется и тормозит следующую овуляцию, а слизистая матки еще больше разрыхляется. Если же оплодотворения не произошло, то желтое тело исчезает, а яйцеклетка выводится из организма и создаются условия для созревания следующего фолликула - наступает писляовуляцийний период.

Писляовуляцийний период у женщин проявляется удалением из организма неоплодотворенные яйцеклетки, слизистой матки и истечением крови, называется менструацией. Менструации наступают с момента половой зрелости и регулярно повторяется до 45-55 лет, когда заканчивается половую жизнь женщины и наступает женский климактерический период.

Неоплодотворенная яйцеклетка, попала в матку, живет в ней 2-3 дня, а потом не закрепляясь в стенку матки погибает. В это время еще продолжается активная деятельность желтого тела и прогестерон активно действует на гипофиз, тормозя этим образование фолликуло гормонов, автоматически снижает синтез эстрогенов в яичниках. Так как нервных импульсов от стенок матки об имплантации яйцеклетки в гипоталамус не попадает, то это уменьшает образование лютеинезуючих гормонов гипофиза и, как результат, начинаются атрофия (рассасывание, перерождение) желтого тела, прекращается образование прогестерона и начинается регресс передовуляцийних перестроек (уменьшается кровозабеспечення матки, отмирают слои миометрия и т.д.). Малое количество эстрогенов приводит к появлению тонических сокращений стенок матки, ведет к отторжению слизистой, которая вместе с кровью образует менструальные выделения. Менструация в среднем длится 3-5 дней при каждой менструации теряется от 50 до 250 мл крови.

После менструации наступает период мижовуляцийного спокию, который при 27-28 дня половом цикле длится 12-14 дней, после чего все периоды полового цикла снова повторяется.

Физиология оплодотворения и беременности заключается в следующем. У женщины оплодотворения яйцеклетки возможно только в первые 1-2 дня после овуляции, так как с третьего дня яйцеклетка обычно покрывается белковой оболочкой, которая противодействует проникновению в ее середину сперматозоидов. Сперматозоиды в полости женских половых органов сохраняют свою жизнеспособность, как указывалось, в течение 7 дней, но их способность к оплодотворению длится всего 4-5 суток. Сперматозоиды, попавшие во влагалище во время полового акта, активизируются ее кислым среду и начинают двигаться против тока жидкости, которая выделяется из половых органов женщины со скоростью 3-4 мм / сек. Таким образом они постепенно проходят шейку матки, ее тело и проникают в верхние отделы яйцеводов где, при случае, один из них соединяется с яйцеклеткой и оплодотворяет ее (это может произойти даже на поверхности яичника). Для оплодотворения яйцеклетки надо чтобы в ее середину попал 1 сперматозоид, но это возможно только при помощи миллионов других сперматозоидов, называется полиспермии. Дело в том, что только в случае окружения яйцеклетки густым слоем большого количества сперматозоидов, каждый из которых выделяет из своей акросомы капельку фермента гиалуронидазы, им удается совместными усилиями растворить, желатиновую оболочку яйцеклетки и предоставить возможность одному из этих сперматозоидов попасть в ее полость, чем и вызвать оплодотворения. Когда головка одного из сперматозоидов входит в яйцеклетку, то последняя мгновенно покрывается плотной белковой оболочкой, изолирующий ее от остальных сперматозоидов (иногда, при проникновении в яйцеклетку двух или более сперматозоидов, возможен в дальнейшем развитие нескольких однояйцевых близнецов). Если в половых органах женщины мало спермы, то оплодотворение может вообще не состояться.

Процесс оплодотворения заключается в сливе гаплоидного набора из 23 хромосом женской и мужской половых клеток в диплоидный набор (23 + 23 = 46) хромосом будущего организма. После оплодотворения образуется зигота и начинается быстрое и непрерывного деления яйца, а вокруг него разрастается плотная ворсинчатая оболочка. С этого момента начинается развитие будущего организма (бластуляция, гаструляция, а затем все остальные этапы эмбрионального и плодного периодов жизни ребенка). Примерно на 8 день по оплодотворению яйцо опускается в полость матки, его оболочка начинает вырабатывать вещество, разрушающее слизистую матки и позволяет яйцу погрузиться в ее взрыхленную к этому моменту толщу, закрепиться в ней и начать разрастания. Этот процесс называется имплантации яйца. Иногда оплодотворенная яйцеклетка не доходит до матки и прикрепляется к стенке маточной трубы; в этом случае наступает внематочная беременность.

Если имплантация яйца состоялась, то от стенок матки до гипоталамуса и гипофиза настраивается поток соответствующих нервных импульсов, в результате чего активность образования гонадотропных гормонов гипофиза не снижается, желтое тело продолжает разрастаться, что увеличивает образование прогестерона и активизирует перестройки организма женщины, которые связаны с ЕЕ беременностью. Гормон желтого тела способствует сохранению плода в матке, препятствует созреванию очередного фолликула на протяжении всей беременности и влияет на рост молочных желез, подготавливая их к кормлению ребенка. Под действием прогестерона при первой беременности развитие молочных желез начинается с роста протоков, а затем постепенно разрастаются и железистые дольки груди, увеличивая общие размеры последних.

Во второй половине беременности, которая всего в норме длится 260-280 суток, желтое тело и плацента (оболочка вокруг плода) начинают синтезировать гормон релаксин, который действует на кости таза, способствуя их различию во время родов. Плацента плода производит также большое количество эстрогенов (до 50 мг в сутки, тогда как до беременности их общее количество в крови не превышает 0,4 мг), прогестерон и хорионический гонадотропин

(последний защищает от дегенерации желтое тело в течение всего периода беременности). Указанные гормоны совместно также блокируют до определенной поры созревания новых фолликулов, стимулируют рост размеров матки и молочных желез. После родов, когда плацента и ее гормоны исчезают, резко активизируется образование гормона гипофиза - пролактина, "включает" секрецию молока.

Молочная железа начинает действовать со дня рождения ребенка, но выделение настоящего молока наступает только на 3-й день кормления. Жидкость, выделяемая в первые 2-3 дня по составу значительно отличается от молока (май же не содержит белка казеина) и называется молозиво.

Молоко матери является необходимым и единственным продуктом для питания новорожденного, так как соотношение количественных и качественных его составляющих лучше отвечает потребностям растущего. Белый цвет и непрозрачность молока обусловлены тем, что в его составе во взвешенном состоянии находятся мелкие капельки жира (до 4-6 млн таких капель в 1 мл молока). Материнское молоко состоит из воды, органических и неорганических веществ. От общего объема в его составе содержится: жира 2-4%; белков (казеина, молочного альбумина и глобулина) - до 4-5%, углеводов (сахара лактозы) - до 3-6%, минеральных солей (фосфорнокислых, сернокислых и хлористых соединений натрия, калия, кальция и других элементов) - до 0,75%. В молоке также витамин А, витамины группы В, С и Е. Ценность материнского молока заключается еще и в том, что оно содержит антитела, предохраняющие маленьких детей от некоторых инфекционных заболеваний. С ростом ребенка состав молока матери меняется в соответствии с потребностями организма.

Мужские и женские половые железы (семенники и яичники), сформировавшись в период внутриутробного развития, подвергаются медленному морфологическому и функциональному созреванию уже после рождения.

Масса яичка у новорожденных составляет 0,3 г, в 1 год - 1 г, в 14 лет - 2 г, в 15-16 лет - 8 г, в 19 лет - 20 г. Семенные канальцы у новорожденных узкие, за весь период развития их диаметр увеличивается в 3 раза.

Яичники закладываются выше полости малого таза, и у новорожденного процесс их опускания еще не закончен. Они достигают полости малого таза в первые 3 недели после рождения, но лишь к 1-4 годам окончательно устанавливается их положение, характерное для взрослого. Масса яичника у новорожденного составляет 5-6 г, и она мало меняется на протяжении последующего развития: у взрослого масса яичника равна 6-8 г. В старости масса яичника уменьшается до 2 г. В процессе полового развития выделяют несколько периодов: детский - до 8-10 лет, отроческий - от 9-10 до 12-14 лет, юношеский - от 13-14 до 16-18 лет, период половой зрелости - до 50-60 лет и климакс - период угасания половой функции.

В период детства в яичнике девочек очень медленно растут примордиальные фолликулы, у которых в большинстве случаев оболочка еще отсутствует.

У мальчиков семенные канальцы в семенниках мало извитые. В моче вне зависимости от пола содержится небольшое количество андрогенов и эстрогенов, которые образуются в этот период в коре надпочечников. Содержание андрогена в плазме крови детей обоего пола сразу же после рождения такое же, как и у молодых женщин. Затем оно снижается до очень низких цифр (иногда до 0) и остается на таком уровне до 5-7 лет.

В период отрочества в яичниках появляются граафовы пузырьки, фолликулы быстро растут. Семенные канальцы в семенниках увеличиваются в размерах, наряду со сперматогониями появляются сперматоциты. В этот период у мальчиков возрастает в плазме крови и в моче количество андрогенов; у девочек - эстрогенов. Их количество еще больше увеличивается в юношеский период, что обусловливает развитие вторичных половых признаков. В этот период появляется свойственная женскому организму периодичность в количестве секретируемых эстрогенов, что обеспечивает женский половой цикл. Резкое повышение секреции эстрогенов совпадает по времени с овуляцией, после чего при отсутствии оплодотворения наступает менструация, которой называют выделение наружу распадающейся слизистой оболочки матки вместе с содержимым маточных желез и кровью из вскрывающихся при этом сосудов. Строгая цикличность в количестве выделяющихся эстрогенов и, соответственно, в изменениях, имеющих место в яичнике и матке, устанавливается не сразу. Первые месяцы половые циклы могут быть нерегулярными.

Возрастные особенности поджелудочной железы.

Эндокринная часть поджелудочной железы начинает формироваться на 5-6 неделе внутриутробного развития, когда происходит разделение ее клеток на экзо- и эндокринные.

При дифференцировке клеточных элементов сначала выделяются бета-клетки (на 3-м месяце эмбрионального развития), а затем становятся видимыми альфа-клетки. К концу 5-го месяца в поджелудочной железе плода оказываются хорошо сформированными островки Лангерганса. У детей первых двух месяцев жизни относительное число их больше, чем в последующие периоды развития. Они составляют 6% от массы всей железы. В конце первого года жизни на их долю приходится 1-0,8%, и такое соотношение эндокринной и экзокринной частей поджелудочной железы сохраняется до 40-50 лет. К старости процентное содержание островковой части железы несколько увеличивается (до 2-3%). С возрастом увеличиваются размеры островков от 50 мкм в период новорожденности до 100-200 мкм в возрасте от 10 до 50 лет. После 50 лет размер островков вновь уменьшается.

Характерные возрастные изменения наблюдается в содержании цинка, который входит в состав гормонов поджелудочной железы. Гранулы цинка в клетках поджелудочной железы появляются уже на 6-й неделе эмбрионального развития. В первые месяцы после рождения отмечается максимальное содержание цинка, которое сохраняется в течение периода зрелости. В старости количество цинка в гормонах резко снижается, происходит разрастание соединительной ткани и относительное увеличение числа клеток, синтезирующих глюкагон за счет уменьшения числа клеток, секретирующих инсулин.

Этими изменениями структуры обусловливаются функциональные возрастные особенности. У детей первых шести месяцев жизни инсулина выделяется в два раза больше, чем у взрослых.

Формирование желез и их функционирование начинается еще во время внутриутробного развития. Эндокринная система отвечает за рост эмбриона и плода. В процессе формирования тела, образовываются связи между железами. После рождения ребенка они укрепляются.

С момента появления на свет и до наступления периода полового созревания наибольшее значение имеют щитовидная железа, гипофиз, надпочечники. В пубертатном периоде возрастает роль половых гормонов. В период с 10-12 до 15-17 лет происходит активизация многих желез. В дальнейшем их работа стабилизируется. При соблюдении правильного образа жизни и отсутствии болезней в работе эндокринной системы не наблюдается существенных сбоев. Исключение составляют лишь половые гормоны.

Наибольшее значение в процессе развития человека отводится гипофизу. Он отвечает за работу щитовидной железы, надпочечников и других периферических частей системы. Масса гипофиза у новорожденного составляет 0,1-0,2 грамма. В 10 годам жизни его вес достигает 0,3 грамма. Масса железы у взрослого человека равняется 0,7-0,9 грамм. Размеры гипофиза могут увеличиваться у женщин во время беременности. В период ожидания ребенка его вес может достигать 1,65 грамма.

Основной функцией гипофиза считается контроль роста тела. Она выполняется за счет выработки гормона роста (соматотропного). Если в раннем возрасте гипофиз работает неправильно, это может привести к чрезмерному увеличению массы и величины тела или, напротив, к небольшим размерам.

Железа значительно влияет на функции и роль эндокринной системы, поэтому при ее неправильной работе выработка гормонов щитовидной железой, надпочечниками осуществляется неверно.

В раннем юношеском возрасте (16-18 лет) гипофиз начинает работать стабильно. Если его активность не нормализуется, и соматотропные гормоны вырабатываются даже после завершения роста организма (20-24 года), это может приводить к акромегалии. Эта болезнь проявляется в чрезмерном увеличении частей тела.



Эпифиз – железа, которая функционирует наиболее активно до младшего школьного возраста (7 лет). Ее вес у новорожденного составляет 7 мг, у взрослого – 200 мг. В железе вырабатываются гормоны, которые тормозят половое развитие. К 3-7 годам активность эпифиза снижается. В период полового созревания число вырабатываемых гормонов значительно сокращается. Благодаря эпифизу поддерживаются биоритмы человека.

Еще одна важная железа в организме человека – щитовидная . Она начинает развиваться одной из первых в эндокринной системе. К моменту рождения, вес железы составляет 1-5 граммов. В 15-16 лет ее масса считается максимальной. Она составляет 14-15 грамм. Наибольшая активность этой части эндокринной системы наблюдается в 5-7 и 13-14 лет. После 21 года и до 30 лет активность щитовидной железы снижается.

Паращитовидные железы начинают формироваться на 2 месяц беременности (5-6 недель). После появления на свет ребенка, их вес составляет 5 мг. В течение жизни ее вес увеличивается в 15-17 раз. Наибольшая активность паращитовидной железы наблюдается в первые 2 года жизни. Затем до 7 лет она поддерживается на довольно высоком уровне.

Вилочковая железа или тимус наиболее активно действует в пубертатном периоде (13-15 лет). В это время его вес составляет 37-39 грамм. Его масса уменьшается с возрастом. В 20 лет вес составляет около 25 грамм, в 21-35 – 22 грамма. Эндокринная система у пожилых работает менее интенсивно, поэтому и вилочковая железа уменьшается в размерах до 13 грамм. По мере развития лимфоидные ткани тимуса заменяются жировыми.

Надпочечники при рождении ребенка весят примерно 6-8 грамм каждый. По мере роста их масса увеличивается до 15 грамм. Формирование желез происходит до 25-30 лет. Наибольшая активность и рост надпочечников наблюдаются в 1-3 года, а также в период полового развития. Благодаря гормонам, которые вырабатывает железа, человек может контролировать стресс. Они также влияют на процесс восстановления клеток, регулируют обмен веществ, половые и другие функции.

Развитие поджелудочной железы происходит до 12 лет. Нарушения в ее работе обнаруживаются преимущественно в период до начала полового созревания.

Женские и мужские половые железы формируются во время внутриутробного развития. Однако после рождения ребенка их активность сдерживается до 10-12 лет, то есть до начала пубертатного кризиса.

Мужские половые железы – яички . При рождении их вес равен примерно 0,3 грамма. С 12-13 лет железа начинает работать более активно под влиянием гонадолиберина. У мальчиков ускоряется рост, появляются вторичные половые признаки. В 15 лет активизируется сперматогенез. К 16-17 годам завершается процесс развития мужских половых желез, и они начинают работать также, как и у взрослого.

Женские половые железы – яичники . Их вес в момент рождения составляет 5-6 грамм. Масса яичников у взрослых женщин равна 6-8 грамм. Развитие половых желез происходит в 3 этапа. От рождения до 6-7 лет наблюдается нейтральная стадия.

В этот период формируется гипоталамус по женскому типу. С 8 лет до начала подросткового возраста длится предпубертатный период. От первой менструации и до начала менопаузы наблюдается пубертатный период. На этом этапе происходит активный рост, развитие вторичных половых признаков, становление менструального цикла.

Эндокринная система у детей более активна, в сравнении с взрослыми. Основные изменения желез происходят в раннем возрасте, младшем и старшем школьном возрасте.

Чтобы формирование и функционирование желез осуществлялось правильно, очень важно заниматься профилактикой нарушений их работы. В этом может помочь тренажёр ТДИ-01 «Третье дыхание». Использовать это устройство можно, начиная с 4 летнего возраста и на протяжении всей жизни. С его помощью человек осваивает технику эндогенного дыхания. Благодаря этому он имеет возможность сохранять здоровье всего организма, в том числе и эндокринной системы.

24. По́чка (лат. ren ) - парный бобовидный орган, выполняющий посредством функции мочеобразования регуляцию химического гомеостаза организма. Входит в систему органов мочевыделения (мочевыделительную систему) у позвоночных животных, в том числе человека.

У человека почки расположены за пристеночным листком брюшины в поясничной области по бокам от двух последних грудных и двух первых поясничных позвонков. Прилегают к задней брюшной стенке в проекции 11-12-го грудного - 1-2-го поясничного позвонков, причем правая почка в норме расположена несколько ниже, поскольку, сверху она граничит с печенью (у взрослого верхний полюс правой почки обычно достигает уровня 11-го межреберья, верхний полюс левой - уровень 11-го ребра).

Размеры одной почки составляют примерно 11,5-12,5 см в длину, 5-6 см в ширину и 3-4 см в толщину . Масса почек составляет 120-200 г, обычно левая почка несколько больше правой .

Функции почек

  • Экскреторная (то есть выделительная)
  • Осморегулирующая
  • Ионорегулирующая
  • Эндокринная (внутрисекреторная)
  • Метаболическая
  • Участие в кроветворении

Основная функция почек - выделительная - достигается процессами фильтрации и секреции. В почечном тельце из капиллярного клубочка под высоким давлением содержимое крови вместе с плазмой (кроме клеток крови и некоторых белков) процеживается в капсулу Шумлянского - Боумэна. Образовавшаяся жидкость - первичная моча продолжает свой путь по извитым канальцам нефрона, в которых происходит обратное всасывание питательных веществ (таких как глюкоза, вода, электролиты и др.) в кровь, при этом в первичной моче остаются мочевина, мочевая кислота и креатин. В результате этого образуется вторичная моча , которая из извитых канальцев идет в почечную лоханку, затем в мочеточник и мочевой пузырь. В норме за день через почки проходит 1700-2000 литров крови, образуется 120-150 литров первичной мочи и 1,5-2 литра вторичной мочи.

Скорость ультрафильтрации определяется несколькими факторами:

  • Разницей давлений в приносящей и отводящей артериоле почечного клубочка.
  • Разницей осмотического давления между кровью в капиллярной сети клубочка и просветом боуменовой капсулы.
  • Свойствами базальной мембраны почечного клубочка.

Вода и электролиты свободно проходят через базальную мембрану, тогда как вещества с более высокой молекулярной массой фильтруются избирательно. Определяющим фактором для фильтрации средне- и высокомолекулярных веществ является размер пор и заряд базальной мембраны клубочка.

Почки играют существенную роль в системе поддержания кислотно-щелочного равновесия плазмы крови. Почки также обеспечивают постоянство концентрации осмотически активных веществ в крови при различном водном режиме для поддержания водно-солевого равновесия.

Через почки из организма выводятся конечные продукты азотистого обмена, чужеродные и токсические соединения (включая многие лекарства), избыток органических и неорганических веществ, они участвуют в обмене углеводов и белков, в образовании биологически активных веществ (в частности - ренина, играющего ключевую роль в регуляции системного артериального давления и скорость секреции альдостерона надпочечниками, эритропоэтина - регулирующего скорость образования эритроцитов).

Почки водных животных в значительной степени отличаются от почек наземных форм в связи с тем, что у водных стоит проблема выведения из организма воды, в то время как наземным необходимо удерживать воду в организме.

Мочеобразование осуществляется за счет трех последовательных процессов: 1) клубочковой фильтрации (ультрафильтрации) воды и низкомолекулярных компонентов из плазмы крови в капсулу почечного клубочка с образованием первичной мочи; 2) канальцевой реабсорбции - процесса обратного всасывания профильтровавшихся веществ и воды из первичной мочи в кровь; 3) канальцевой секреции - процесса переноса из крови в просвет канальцев ионов и органических веществ.

25. Кожа человека - это один из его органов, имеющий свое строение и физиологию. Кожа является самым большим органом нашего тела, ее масса примерно в три раза превосходит массу печени (самого крупного органа в организме), что составляет 5 % от общего веса тела.

СТРОЕНИЕ КОЖИ Строение кожи очень сложно. Кожа состоит из трех слоев: эпидермиса, собственно кожи, или дермы, и подкожной жировой клетчатки. Каждый из них, в свою очередь, состоит из нескольких слоев (см.схему).

Эпидермис имеет вид узкой полоски, на самом деле он состоит из пяти слоев. Эпидермис содержит эпителиальные клетки, имеющие разнообразную структуру и расположение. В самом нижнем его слое, зародышевом, или базальном, постоянно происходит размножение клеток. В нем же имеется пигмент меланин, от количества которого зависит и цвет кожи. Чем больше вырабатывается меланина, тем интенсивнее и темнее окраска кожи. У людей, живущих в жарких странах, меланина в коже вырабатывается очень много, поэтому кожа у них смуглая; наоборот, у людей, живущих на севере, меланина мало, поэтому кожа северян светлее.

Над зародышевым слоем находится шиповатый (или шиповидный),состоящий из одного или нескольких рядов клеток многогранной формы. Между отростками клеток, составляющих этот слой, образуются щели; в них протекает лимфа - жидкость, несущая питательные вещества в клетки и уносящая из них отработанные продукты. Над шиповатым располагается зернистый слой, состоящий из одного или нескольких рядов клеток неправильной формы. На ладонях и подошвах зернистый слой толще и имеет 4-5 рядов клеток.

Зародышевой, шиповатый и зернистый слои вместе принято называть мальпигиевым слоем. Над зернистым выделяют блестящий слой, состоящий из 3-4 рядов клеток. Он хорошо развит на ладонях и подошвах, но его почти нет на красной кайме губ. Роговой слой самый поверхностный, он сформирован из клеток, лишенных ядер. Клетки этого слоя легко отслаиваются. Роговой слой отличается плотностью, упругостью, плохо проводит тепло, электричество и предохраняет кожу от травм, ожогов, холода, влаги, химических веществ. Этот слой эпидермиса имеет особое значение в косметологии.

Процесс шелушения лежит в основе многих косметических процедур, способствующих усиленному отторжению самого поверхностного рогового слоя эпидермиса, например при удалении веснушек, пигментных пятен и др.

Собственно кожа состоит из двух слоев - сосочкового и сетчатого. В ней имеются коллагеновые, эластические и ретикулярные волокна, составляющие каркас кожи.

В сосочковом слое волокна нежнее, тоньше; в сетчатом они образуют более плотные пучки. На ощупь кожа плотна и отличается упругостью. Эти качества зависят от наличия в коже эластических волокон. В сетчатом слое кожи расположены потовые, сальные железы и волосы. Подкожная жировая клетчатка в различных частях тела имеет неодинаковую толщину: на животе, ягодицах, ладонях она развита хорошо; на ушных раковинах красной кайме губ она выражена очень слабо. У тучных людей кожа малоподвижна, у худых и истощенных людей она легко смещается. В подкожной клетчатке откладываются запасы жира, которые расходуются при болезнях или в других неблагоприятных случаях. Подкожная клетчатка защищает организм от ушибов, переохлаждений. В собственно коже и подкожной клетчатке находятся кровеносные и лимфатические сосуды, нервные окончания, волосяные фолликулы, потовые и сальные железы, мышцы.

Свободные кислоты обусловливают кислую реакцию жиров. Поэтому жиры кожных желез имеют кислую реакцию. Вышедшее на поверхность кожи сало создает на ней вместе с потом кислую водно-жировую пленку, называемую «кислотной мантией» кожи. Показатель среды этой мантии у здоровой кожи составляет 5,5-6,5. Традиционно считают, что мантия создает защитный барьер для проникновения в кожу микробов.

26. Основным свойством живых клеток является раздражимость, т. е. их способность реагировать изменением обмена веществ в ответ на действие раздражителей. Возбудимость - свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нервные, мышечные и некоторые секреторные клетки. Возбуждение - ответ ткани на ее раздражение, проявляющийся в специфической для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (генерация потенциала действия, метаболические изменения).

Одним из важных свойств живых клеток является их электрическая возбудимость, т.е. способность возбуждаться в ответ на действие электрического тока. Высокая чувствительность возбудимых тканей к действию слабого электрического тока впервые была продемонстрирована Гальвани в опытах на нервно-мышечном препарате задних лапок лягушки. Если к нервно-мышечному препарату лягушки приложить две соединенные между собой пластинки из различных металлов, например медь-цинк, таким образом, что бы одна пластинка касалась мышцы, а другая - нерва, то мышца будет сокращаться (первый опыт Гальвани). раздражители и раздражимость. На живой организм постоянно действуют различные раздражители (свет, звук, различные запахи и др.). Воздействие раздражителя на организм называется раздражением. Организм воспринимает раздражение благодаря особой способности – раздражимости. Раздражимость – это способность клеток, тканей усиливать или уменьшать активность в ответ на воздействие раздражителей. Условно раздражители можно подразделить на три группы: физические, химические и физико-химические. К физическим раздражителям относятся механические, электрические, температурные, световые звуковые. К химическим относятся гормоны, лекарственные вещества и др. К физико-химическим раздражителям относятся изменения осмотического давления и рН крови.

К действию одних раздражителей орган специально приспособлен. Такие раздражители называют адекватными. Неадекватными будут такие раздражители, к воздействию которых данная клетка или ткань не приспособлена. Так для глаза адекватным раздражителем будут световые лучи, а неадекватным звуковые волны.

По силе раздражители подразделяются на подпороговые, пороговые и надпороговые. Пороговый раздражитель характеризуется минимальной силой, достаточной для того чтобы вызвать минимальный специфический эффект в раздражаемой ткани. Подпороговый раздражитель вызывает лишь местную реакцию. Его силы недостаточно для вызывания специфического эффекта. Нпротив, надпороговые раздражители обладают большой силой и вызывают самую большую реакцию.

ВОЗРАСТНЫЕ ОСОБЕННОСТИ ЭНДОКРИННОЙ СИСТЕМЫ

Железы внутренней секреции. В регуляции функций организма важная роль принадлежит эндокринной системе. Органы этой си­стемы – железы внутренней секреции – выделяют особые вещест­ва, оказывающие существенное и специализированное влияние на обмен веществ, структуру и функцию органов и тканей. Железы внутренней секреции отличаются от других желез, имеющих вы­водные протоки (желез внешней секреции), тем, что выделяют продуцируемые ими вещества прямо в кровь. Поэтому их назы­вают эндокринными железами (греч. еndon – внутри, krinein – выделять).

К железам внутренней секреции относятся гипофиз, эпифиз, поджелудочная железа, щитовидная железа, надпочечники, поло­вые, паращитовидные или околощитовидные железы, вилочковая (зобная) железа.

Поджелудочная и половые железы – смешанные, так как часть их клеток выполняет внешнесекреторную функцию, другая часть – внутрисекреторную. Половые железы вырабатывают не только половые гормоны, но и половые клетки (яйцеклетки и спермато­зоиды). Часть клеток поджелудочной железы вырабатывает гор­мон инсулин и глюкагон, другие ее клетки вырабатывают пище­варительный и поджелудочный сок.

Эндокринные железы человека невелики по размерам, имеют очень небольшую массу (от долей грамма до нескольких грам­мов), богато снабжены кровеносными сосудами. Кровь приносит к ним необходимый строительный материал и уносит химически активные секреты.

К эндокринным железам подходит разветвленная сеть нерв­ных волокон, их деятельность постоянно контролирует нервная система.

Железы внутренней секреции функционально тесно связаны между собой, и поражение одной железы вызывает нарушение функции других желез.

Щитовидная железа. В процессе онтогенеза масса щитовидной железы значительно возрастает – с 1 г в период новорожденности до 10 г к 10 годам. С началом полового созревания рост железы особенно интенси­вен, в этот же период возрастает функциональное напряжение щи­товидной железы, о чем свидетельствует значительное повышение содержания суммарного белка, который входит в состав гормона щитовидной железы. Содержание тиреотропина в крови интенсив­но нарастает до 7 лет.

Увеличение содержания тироидных гормонов отмечается к 10 годам и на завершающих этапах поло­вого созревания (15-16 лет). В возрасте от 5-6 к 9-10 годам качественно изменяются гипофизарно-щитовидные взаимоотноше­ния- снижается чувствительность щитовидной железы к тирео-тропным гормонам, наибольшая чувствительность к которым от­мечена в 5-6 лет. Это свидетельствует о том, что щитовидная железа имеет особенно большое значение для развития организ­ма в раннем возрасте.

Недостаточность функции щитовидной железы в детском воз­расте приводит к кретинизму. При этом задерживается рост и нарушаются пропорции тела, задерживается половое развитие, отстает психическое развитие. Раннее выявление гипофункции щитовидной железы и соответствующее лечение оказывают зна­чительный положительный эффект.

Надпочечники. Надпочечные железы уже с первых недель жизни характери­зуются бурными структурными преобразованиями. Развитие кори надпочечников интенсивно протекает в первые годы жизни ре­бенка. К 7 годам ее ширина достигает 881 мкм, в 14 лет она составляет 1003,6 мкм. Мозговое вещество надпочечников к мо­менту рождения представлено незрелыми нервными клетками. Они быстро в течение первых лет жизни дифференцируются в зрелые клетки, называемые хромофильными, так как отличаются способ­ностью окрашиваться в желтый цвет хромовыми солями. Эти клет­ки синтезируют гормоны, действие которых имеет много общего с симпатической нервной системой,- катехоламины (адреналин и норадреналин). Синтезированные катехоламины содержатся в мозговом веществе в виде гранул, из которых освобождаются под действием соответствующих стимулов и поступают в венозную кровь, оттекающую от коры надпочечников и проходящую через мозговое вещество. Стимулами поступления катехоламинов в кровь является возбуждение, раздражение симпатических нер­вов, физическая нагрузка, охлаждение и др. Главным гормоном мозгового вещества является адреналин, он составляет примерно 80% гормонов, синтезируемых в этом отделе надпочечников. Адре­налин известен как один из самых быстродействующих гормонов. Он ускоряет кругооборот крови, усиливает и учащает сердечные сокращения; улучшает легочное дыхание, расширяет бронхи; уве­личивает распад гликогена в печени, выход сахара в кровь; уси­ливает сокращение мышц, снижает их утомление и т. д. Все эти влияния адреналина ведут к одному общему результату – моби­лизации всех сил организма для выполнения тяжелой работы.

Повышенная секреция адреналина – один из важнейших ме­ханизмов перестройки в функционировании организма в экстре­мальных ситуациях, при эмоциональном стрессе, внезапных физи­ческих нагрузках, при охлаждении.

Тесная связь хромофильных клеток надпочечника с симпати­ческой нервной системой обусловливает быстрое выделение адре­налина во всех случаях, когда в жизни человека возникают об­стоятельства, требующие от него срочного напряжения сил. Зна­чительное нарастание функционального напряжения надпочечни­ков отмечается к 6 годам и в период полового созревания. В это же время значительно увеличивается содержание в крови стеро­идных гормонов и катехоламинов.

Поджелудочная железа. У новорожденных внутрисекреторная ткань поджелудочной железы преобладает над внешнесекреторной. Островки Лангер­ганса значительно увеличиваются в размерах с возрастом. Остров­ки большого диаметра (200-240 мкм), свойственные взрослым, обнаруживаются после 10 лет. Установлено и повышение уровня инсулина в крови в период от 10 до 11 лет. Незрелость гормо­нальной функции поджелудочной железы может явиться одной из причин того, что у детей сахарный диабет выявляется чаще всего в возрасте от 6 до 12 лет, особенно после перенесения острых инфекционных заболеваний (корь, ветряная оспа, свинка). Отмечено, что развитию заболевания способствует переедание, в особенности избыточность богатой углеводами пищи.

9. ВОЗРАСТНЫЕ ОСОБЕННОСТИ ПОЛОВЫХ ЖЕЛЕЗ Мужские и женские половые железы (семенники и яичники), сформировавшись в период внутриутробного развития, подверга­ются медленному Морфологическому и функциональному созрева­нию уже после рождения. Масса яичка у новорожденных составляет 0,3 г , в 1 год – 1 г , в 14 лет – 2 г , в 15-16 лет – 8 г , в 19 лет – 20 г . Семенные канальцы у новорожденных узкие, за весь период развития их диаметр увеличивается в 3 раза.Яичники закладываются выше полости малого таза, и у ново­рожденного процесс их опускания еще не закончен. Они достигают полости малого,таза в первые 3 недели после рождения, но лишь к 1-4 годам окончательно устанавливается их положение, харак­терное для взрослого. Масса яичника у новорожденного составляет 5-6 г, и она мало меняется на протяжении последующего развития: у взрослого масса яичника равна 6-8 г, В старости масса яичника уменьшается до 2 г. В процессе полового развития выделяют не­сколько периодов: детский – до 8-10 лет, отроческий – от 9-10 до 12-14 лет, юношеский – от 13-14 до 16-18 лет, период половой зрелости – до 50-60 лет и климакс – период угасания половой функции.В период детства в яичнике девочек очень медленно растут примордиальные фолликулы, у которых в большинстве случаев оболочка еще отсутствует.У мальчиков семенные канальцы в семенниках мало извитые. В, моче вне зависимости от пола содержится небольшое количество андрогенов и эстрогенов, которые образуются в этот период в коре надпочечников. Содержание андрогена в плазме крови детей обоего пола сразу же после рождения такое же, как и у молодых женщин. Затем оно снижается до очень низких цифр (иногда до 0) и остается на таком уровне до 5-7 лет. В период отрочества в яичниках появляются граафовы пузырьки, фолликулы быстро растут. Семенные канальцы в семенниках увели­чиваются в размерах, наряду со сперматогониями появляются сперматоциты. В этот период у мальчиков возрастает в плазме крови и в моче количество андрогенов; у девочек – эстрогенов. Их количество еще больше увеличивается в юношеский период, что обусловливает развитие вторичных половых признаков. В этот период появляется свойственная женскому организму периодич­ность в количестве секретируемых эстрогенов, что обеспечивает женский половой цикл. Резкое повышение секреции эстрогенов совпадает по времени с овуляцией, после чего при отсутствии опло­дотворения наступает менструация, которой называют выделение наружу распадающейся слизистой оболочки матки вместе с содер­жимым маточных желез и кровью из вскрывающихся при этом со­судов. Строгая цикличность в количестве выделяющихся эстроге­нов и, соответственно, в изменениях, имеющих место в яичнике и матке, устанавливается не сразу. Первые месяцы половые циклы могут быть не регулярными. С установлением регулярных половых циклов начинается период половой зрелости, продолжающийся у женщин до 45-50 лет, а у мужчин в среднем до 60 лет. Период полового зрелости у женщин характеризуется наличием регулярных половых циклов: яичникового и маточного.



ПОЛОВОЕ СОЗРЕВАНИЕ

Понятие о половом созревании. Половые железы и связанные с ними признаки пола, закладываясь во внутриутробном периоде, формируются на протяжении всего периода детства и определяют половое развитие. Половые железы, их функции неразрывно свя­заны с целостным процессом развития ребенка. На определенном этапе онтогенеза половое развитие резко ускоряется и наступает физиологическая половая зрелость. Период ускоренного полового развития и достижение половой зрелости называется периодом полового созревания. Этот период приходится в основном на под­ростковый возраст. Половое созревание девочек на 1-2 года опе­режает половое созревание мальчиков, имеется и значительный индивидуальный разброс в сроках и темпах полового созревания.

Сроки наступления полового созревания и его интенсивность различны и зависят от многих факторов: состояния здоровья, ха­рактера питания, климата, бытовых и социально-экономических условий. Немаловажную роль играют и наследственные особен­ности.

Неблагоприятные бытовые условия, неполноценная пища, не­достаток в ней витаминов, тяжелые или повторные заболевания ведут к задержке полового созревания. В больших городах половое созревание подростков обычно наступает раньше, чем в сель­ской местности.

В период полового созревания происходят глубокие изменения организма. Изменяются взаимоотношения эндокринных желез и прежде всего гипоталамо-гипофизарной систему. Активируются структуры гипоталамуса, нейросекреты которых стимулируют вы­деление тропных гормонов гипофиза.

Под влиянием гормонов гипофиза усиливается рост тела в длину. Гипофиз также стимулирует деятельность щитовидной же­лезы, отчего, особенно у девочек, во время полового созревания заметно увеличивается щитовидная железа. Возросшая актив­ность гипофиза приводит к усилению деятельности надпочечников, начинается активная деятельность половых желез, усиливающаяся секреция половых гормонов приводит к развитию так называемых вторичных половых признаков – особенностей телосложения, ово­лосения, тембра голоса, развитию молочных желез. Половые же­лезы и строение половых органов относят к первичным половым признакам.

Стадии полового созревания. Половое созревание не плавный процесс, в нем выделяют определенные стадии, каждая из кото­рых характеризуется спецификой функционирования желез вну­тренней секреции и соответственно всего организма в целом. Ста­дии определяются по совокупности первичных "и вторичных по­ловых признаков. Как у мальчиков, так и у девочек выделяют 5 стадий полового созревания.

I стадия – предпубертат (период, непосредственно предшест­вующий половому созреванию). Характеризуется отсутствием вто­ричных половых признаков.

II стадия – начало пубертата. У мальчиков небольшое увели­чение размеров яичек. Минимальное оволосение на лобке. Воло­сы редкие и прямые. У девочек набухание грудных желез. Неболь­шое оволосение вдоль половых губ. На этой стадии резко акти­визируется гипофиз, увеличиваются его гонадотропная и соматотропная функции. Усиление секреции соматотрогшого гормона на этой стадии больше выражено у девочек, что определяет усиление у них ростовых процессов. Усиливается выделение половых гор­монов, активизируется функция надпочечников.

III стадия – у мальчиков дальнейшее увеличение яичек, на­чало увеличения полового члена, в основном в длину. Волосы на лобке становятся темнее, грубее, начинают распространяться на лонное сочленение. У девочек дальнейшее развитие молочных же­лез, оволосение распространяется по направлению к лобку. Про­исходит дальнейшее увеличение содержания в крови гонадотропных гормонов. Активизируется функция половых желез. У маль­чиков усиленная секреция соматотропина определяет ускоренный рост.

IV стадия. У мальчиков увеличивается в ширину половой член, изменяется голос, появляются юношеские угри, начинается ово­лосение лица, подмышечное и лобковое оволосение. У девочек ин­тенсивно развиваются молочные железы, оволосение по взросло­му типу, но менее распространенное. На этой стадии усиленно вы­деляются андрогены и эстрогены. У мальчиков сохраняется высо­кий уровень соматотропина, определяющий значительную скорость роста. У девочек содержание соматотропина снижается и скорость роста падает.

V стадия – у мальчиков окончательно развиваются половые органы и вторичные половые признаки. У девочек молочные же­лезы и половое оволосение соответствуют таковым взрослой жен­щины. На этой стадии у девочек стабилизируются менструации. Появление менструации свидетельствует о начале половой зрело­сти – яичники уже продуцируют готовые к оплодотворению со­зревшие яйцеклетки.

Менструация в среднем продолжается от 2 до 5 дней. За это время выделяется около 50-150 см 3 крови. Если менструации установились, то они повторяются примерно через каждые 24-28 дней. Цикл считается нормальным, когда менструации насту­пают через одинаковые промежутки времени, длятся одинаковое число дней с одинаковой интенсивностью. Вначале менструации могут продолжаться 7-8 дней, исчезать на несколько месяцев, на год и больше. Лишь постепенно устанавливается регулярный цикл. У мальчиков на этой стадии полного развития достигает сперматогенез.

В период полового созревания, особенно на II-III стадии, когда резко перестраивается функция гипоталамо-гипофизарной системы – ведущего звена эндокринной регуляции, все физиоло­гические функции претерпевают значительные изменения.

За интенсивным ростом костного скелета и мышечной системы у подростков не всегда поспевает развитие внутренних органов – сердца, легких, желудочно-кишечного тракта. Сердце опережает в росте кровеносные сосуды, вследствие чего кровяное давление повышается и затрудняет, прежде всего, работу самого сердца. В то же время бурная перестройка всего организма, происходя­щая в период полового созревания, в свою очередь, предъявляет повышенные требования к сердцу. А недостаточная работа сердца («юношеское сердце») приводит нередко к головокружениям, посинению и похолоданию конечностей у мальчиков и девочек. Отсюда и головные боли, и быстрая утомляемость, и периодиче­ские приступы вялости; нередко у подростков наблюдается обмо­рочное состояние из-за спазмов мозговых сосудов. С окончанием периода полового созревания эти нарушения обычно исчезают бесследно.

Существенные изменения на этом этапе развития в связи ак­тивацией гипоталамуса претерпевают функции ЦНС. Изменяется эмоциональная сфера: эмоции подростков подвижны, изменчивы, противоречивы: повышенная чувствительность нередко сочетается с черствостью, застенчи­вость – с нарочитой развязностью, проявляются чрезмерный кри­тицизм и нетерпимость к родительской опеке. В этот период иногда наблюдаются снижение работоспособности, невротические реакции, раздражимость, плаксивость (особенно у девочек в пе­риод менструации).

ЗАКЛЮЧЕНИЕ

В периодах развития до достижения зрелого возрасти, наиболее интенсивно развивается, человек растет и в этих периодах родителям следует особо пристально наблюдать за своими детьми, если не принимать нужных мер в эти периоды то последствия окажутся неприятными, как для самого ребенка, так и для его родителей. Самые трудные для родителей периоды – это «новорожденный», «грудной» и «подростковый».

В первые два периода организм только становится, и не известно как он будет развиваться – ведь он еще ослаблен и не готов к жизни.

В «подростковый» интенсивно формируется личность подростка, возникает чувство взросления, изменяются отношения к предста­вителям противоположного пола.

В переходный период детям нужно особенно чуткое отношение родителей и педагогов. Не следует специально привлекать вни­мание подростков к сложным изменениям в их организме, психи­ке, однако разъяснить закономерность и биологический смысл этих изменений необходимо. Искусство воспитателя в этих слу­чаях заключается в том, чтобы найти такие формы и методы работы, которые бы переключали внимание детей на различные и многообразные виды деятельности, отвлекали их от сексуаль­ных переживаний. Это, прежде всего, повышение требований к уче­нию, труду и поведению школьников.

Вместе с тем, очень важно тактичное, уважительное отноше­ние взрослых к инициативе и самостоятельности подростков, уме­ние направить их энергию в правильное русло. Ведь подросткам свойственно переоценивать и свои силы, и меру своей самостоя­тельности. Это тоже одна из особенностей переходного периода. 12. Литература:

1. Анатомия и физиология детского организма: (Основы учения о клетке и развитии организма, нервная система, опорнодвигат. аппарат): Учебник для студентов пед. ин-тов по спец. «Педагогика и психология»./ Под ред. Леонтьева Н.Н, Мариновой К.В.-2-е изд. перераб.- М.: Просвещение, 1986.

2. Анатомия и физиология детского организма: (Внутренние органы)» / Под ред. Леонтьева Н.Н, Мариновой К.В.- М.:Просвещение,1976

3. Возрастная физиология и школьная гигиена: Пособие для студентов пед. институтов»/ Под ред. Хрипкова А.Г. и др.- М.: Просвещение, 1990

4. Эндокринная система растущего организма: Учебное пособие для ВУЗов» /Под ред. Држевецкой И.А – М.: Высшая школа, 1987.

КУРС ЛЕКЦИЙ ПО

Гипофиз (hypophysis, s.glandula pituitaria) находится в гипофизарной ямке турецкого седла клиновидной кости и отделен от полости черепа отростком твердой оболочки головного мозга, образующим диафрагму седла. Через отверстие в этой диафрагме гипофиз соединен с воронкой гипоталамуса промежуточного мозга. Поперечный размер гипофиза равен 10-17 мм, переднезадний - 5-15 мм, вертикальный - 5-10 мм. Масса гипофиза у мужчин равна примерно 0,5 г, у женщин - 0,6 г. Снаружи гипофиз покрыт капсулой.

В соответствии с развитием гипофиза из двух разных зачатков в органе различают две доли - переднюю и заднюю. Аденогипофиз, или передняя доля (adenohypophysis, s.lobus anterior), более крупная, составляет 70-80 % от всей массы гипофиза. Она более плотная, чем задняя доля. В передней доле выделяют дистальную часть (pars distalis), которая занимает переднюю часть гипофизарной ямки, промежуточную часть (pars intermedia), расположенную на границе с задней долей, и бугорную часть (pars tuberalis), уходящую вверх и соединяющуюся с воронкой гипоталамуса. В связи с обилием кровеносных сосудов передняя доля имеет бледно-желтый, с красноватым оттенком цвет. Паренхима передней доли гипофиза представлена несколькими типами железистых клеток, между тяжами которых располагаются синусоидальные кровеносные капилляры. Половина (50 %) клеток аденогипофиза являются хромафильными аденоцитами, имеющими в своей цитоплазме мелкозернистые гранулы, хорошо окрашивающиеся солями хрома. Это ацидофильные аденоциты (40 % от всех клеток аденогипофиза) и базофильные аденоциты {10 %). В число базофильных аденоцитов входят гонадотропные, кортикотропные и тиреотропные эндокриноциты. Хромофобные аденоциты мелкие, они имеют крупное ядро и небольшое количество цитоплазмы. Эти клетки считаются предшественниками хромофильных аденоцитов. Другие 50 % клеток аденогипофиза являются хромофобными аденоцитами.

Нейрогипофиз, или задняя доля (neurohypophysis, s.lobus posterior), состоит из нервной доли (lobus nervosus), которая находится в задней части гипофизарной ямки, и воронки (infundibulum), расположенной позади бугорной части аденогипофиза. Задняя доля гипофиза образована нейроглиальными клетками (питуициты), нервными волокнами, идущими от нейросекреторных ядер гипоталамуса в нейрогипофиз, и нейросекреторными тельцами.

Гипофиз при помощи нервных волокон (путей) и кровеносных сосудов функционально связан с гипоталамусом промежуточного мозга, который регулирует деятельность гипофиза. Гипофиз и гипоталамус вместе с их нейроэндокринными, сосудистыми и нервными связями принято рассматривать как гипоталамо-гипофизарную систему.

Гормоны передней и задней долей гипофиза оказывают влияние на многие функции организма, в первую очередь через другие эндокринные железы. В передней доле гипофиза ацидофильные аденоциты (альфа-клетки) вырабатывают сомотропный гормон (гормон роста), принимающий участие в регуляции процессов роста и развития молодого организма. Кортикотропные эндокриноциты секретируют адренокортикотропный гормон (АКТГ), стимулирующий секрецию стероидных гормонов надпочечниками. Тиротропные эндокриноциты секретируют тиротропный гормон (ТТГ), влияющий на развитие щитовидной железы и активирующий продукцию ее гормонов. Гонадотропные гормоны: фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ) и пролактин - влияют на половое созревание организма, регулируют и стимулируют развитие фолликулов в яичнике, овуляцию, рост молочных желез и выработку молока у женщин, процесс сперматогенеза у мужчин. Эти гормоны вырабатываются базофильными аденоцитами бета-клетки ). Здесь же секретируются липотропные факторы гипофиза, которые оказывают влияние на мобилизацию и утилизацию жиров в организме. В промежуточной части передней доли образуется меланоцитостимулирующий гормон, контролирующий образование пигментов - меланинов - в организме.

Нейросекреторные клетки супраоптического и паравентрикулярного ядер в гипоталамусе продуцируют вазопрессин и окситоцин. Эти гормоны транспортируются к клеткам задней доли гипофиза по аксонам, составляющим гипоталамо-гипофизарный тракт. Из задней доли гипофиза эти вещества поступают в кровь. Гормон вазопрессин оказывает сосудосуживающее и антидиуретическое действие, за что и получил также название антидиуретического гормона (АДГ). Окситоцин оказывает стимулирующее влияние на сократительную способность мускулатуры матки, усиливает выделение молока лактирующей молочной железой, тормозит развитие и функцию желтого тела, влияет на изменение тонуса гладких (неисчерченных) мышц желудочно-кишечного тракта.

Развитие гипофиза

Передняя доля гипофиза развивается из эпителия дорсальной стенки ротовой бухты в виде кольцевидного выроста (карман Ратке). Это эктодермальное выпячивание растет в сторону дна будущего III желудочка. Навстречу ему от нижней поверхности второго мозгового пузыря (будущее дно III желудочка) вырастает отросток, из которого развиваются серый бугор воронки и задняя доля гипофиза.

Сосуды и нервы гипофиза

От внутренних сонных артерий и сосудов артериального круга большого мозга к гипофизу направляются верхние и нижние гипофизарные артерии. Верхние гипофизарные артерии идут к серому ядру и воронке гипоталамуса, анастомозируют здесь друг с другом и образуют проникающие в ткань мозга капилляры - первичную гемокапиллярную сеть. Из длинных и коротких петель этой сети формируются воротные вены, которые направляют к передней доле гипофиза. В паренхиме передней доли гипофиза эти вены распадаются на широкие синусоидальные капилляры, образующие вторичную гемокапиллярную сеть. Задняя доля гипофиза кровоснабжается преимущественно за счет нижней гипофизарной артерии. Между верхними и нижними гипофизарными артериями имеются длинные артериальные анастомозы. Отток венозной крови из вторичной гемокапиллярной сети осуществляется по системе вен, впадающих в пещеристые и межпещеристые синусы твердой оболочки головного мозга.

В иннервации гипофиза участвуют симпатические волокна, проникающие в орган вместе с артериями. Постганглио-нарные симпатические нервные волокна отходят от сплетения внутренней сонной артерии. Помимо этого, в задней доле гипофиза обнаруживаются многочисленные окончания отростков нейросекреторных клеток, залегающих в ядрах гипоталамуса.

Возрастные особенности гипофиза

Средняя масса гипофиза у новорожденных достигает 0,12 г. Масса органа удваивается к 10 и утраивается к 15 годам. К 20-летнему возрасту масса гипофиза достигает максимума (530-560 мг) и в последующие возрастные периоды почти не меняется. После 60 лет наблюдается небольшое уменьшение массы этой железы внутренней секреции.

Гормоны гипофиза

Единство нервной и гормональной регуляции в организме обеспечивается тесной анатомической и функциональной связью гипофиза и гипоталамуса. Этот комплекс определяет состояние и функционирование всей эндокринной системы.

Главная железа внутренней секреции, вырабатывающая ряд пептидных гормонов, непосредственно регулирующих функцию периферических желез, - гипофиз. Это красновато-серое образование бобовидной формы, покрытое фиброзной капсулой массой 0,5-0,6 г. Он незначительно меняется в зависимости от пола и возраста человека. Общепринятым остается деление гипофиза на две доли, различные по развитию, строению и функциям: переднюю дистальную - аденогипофиз и заднюю - нейрогипофиз. Первый составляет около 70 % от общей массы железы и условно делится на дистальную, воронковую и промежуточную части, второй - на заднюю часть, или долю, и гипофизарную ножку. Железа расположена в гипофизарной ямке турецкого седла клиновидной кости и через ножку связана с мозгом. Верхняя часть передней доли прикрыта зрительным перекрестом и зрительными трактами. Кровоснабжение гипофиза весьма обильно и осуществляется ветвями внутренней сонной артерии (верхней и нижней гипофизарными артериями), а также ветвями артериального круга большого мозга. Верхние гипофизарные артерии участвуют в кровоснабжении аденогипофиза, а нижние - нейрогипофиза, контактируя при этом с нейросекреторными окончаниями аксонов крупноклеточных ядер гипоталамуса. Первые входят в срединное возвышение гипоталамуса, где рассыпаются в капиллярную сеть (первичное капиллярное сплетение). Эти капилляры (с которыми контактируют терминали аксонов мелких нейросекреторных клеток медиобазального гипоталамуса) собираются в портальные вены, спускающиеся вдоль гипофизарной ножки в паренхиму аденогипофиза, где вновь разделяются на сеть синусоидных капилляров (вторичное капиллярное сплетение). Так, кровь, предварительно пройдя через срединное возвышение гипоталамуса, где обогащается гипоталамическими аденогипофизотропными гормонами (рилизинг-гормонами), попадает к аденогипофизу.

Отток крови, насыщенной аденогипофизарными гормонами, из многочисленных капилляров вторичного сплетения осуществляется по системе вен, которые в свою очередь впадают в венозные синусы твердой мозговой оболочки и далее в общий кровоток. Таким образом, портальная система гипофиза с нисходящим направлением тока крови от гипоталамуса является морфофункциональным компонентом сложного механизма нейрогуморального контроля тропных функций аденогипофиза.

Иннервация гипофиза осуществляется симпатическими волокнами, следующими по гипофизарным артериям. Начало им дают постганглионарные волокна, идущие через внутреннее сонное сплетение, связанное с верхними шейными узлами. Прямой иннервации аденогипофиза от гипоталамуса нет. В заднюю долю поступают нервные волокна нейросекреторных ядер гипоталамуса.

Аденогипофиз по гистологической архитектонике представляет собой весьма сложное образование. В нем различают два вида железистых клеток - хромофобные и хр.омофильные. Последние в свою очередь делятся на ацидофильные и базофильные (детальное гистологическое описание гипофиза дано в соответствующем разделе руководства). Однако следует отметить, что гормоны, продуцируемые железистыми клетками, входящими в состав паренхимы аденогипофиза, из-за многообразия последних в какой-то степени различны по своей химической природе, а тонкая структура секретизирующих клеток должна соответствовать особенностям биосинтеза каждого из них. Но иногда в аденогипофизе можно наблюдать и переходные формы железистых клеток, которые способны вырабатывать несколько гормонов. Имеются сведения о том, что разновидность железистых клеток аденогипофиза не всегда определяется генетически.

Под диафрагмой турецкого седла находится воронковая часть передней доли. Она охватывает ножку гипофиза, контактируя с серым бугром. Эта часть аденогипофиза характеризуется наличием в ней эпителиальных клеток и обильным кровоснабжением. Она также гормонально-активна.

Промежуточная (средняя) часть гипофиза состоит из нескольких слоев крупных секреторно-активных базофильных клеток.

Гипофиз через свои гормоны осуществляет разнообразные функции. В его передней доле вырабатываются адренокортикотропный (АКТГ), тиреотропный (ТТГ), фолликулостимулирующий (ФСГ), лютеинизирующий (ЛГ), липотропные гормоны, а также гормон роста - соматотропный (СТО и пролактин. В промежуточной доле синтезируется меланоцитостимулирующий гормон (МСГ), а в задней накапливается вазопрессин и окситоцин.

АКТГ

Гипофизарные гормоны представляют группу белковых и пептидных гормонов и гликопротеидов. Из гормонов передней доли гипофиза наиболее изучен АКТГ. Он вырабатывается базофильными клетками. Основная его физиологическая функция - стимуляция биосинтеза и секреция стероидных гормонов корой надпочечников. АКТГ также проявляет меланоцитостимулирующую и липотропную активность. В 1953 г. он был выделен в чистом виде. В дальнейшем была установлена его химическая структура, состоящая у человека и ряда млекопитающих из 39 аминокислотных остатков. АКТГ не обладает видовой специфичностью. В настоящее время осуществлен химический синтез как самого гормона, так и различных, более активных, чем природные гормоны, фрагментов его молекулы. В структуре гормона два участка пептидной цепи, один из которых обеспечивает обнаружение и связывание АКТГ с рецептором, а другой - дает биологический эффект. С рецептором АКТГ, по-видимому, связывается за счет взаимодействия электрических зарядов гормона и рецептора. Роль биологического эффектора АКТГ выполняет фрагмент молекулы 4-10 (Мет-Глу-Гис-Фен-Арг-Три-Три).

Меланоцитостимулирующая активность АКТГ обусловлена присутствием в молекуле N-концевого участка, состоящего из 13 аминокислотных остатков и повторяющего структуру альфа-меланоцитостимулирующего гормона. Этот же участок содержит гептапептид, присутствующий в других гормонах гипофиза и обладающий некоторой адренокортикотропной, меланоцитостимулирующей и липотропной активностями.

Ключевым моментом в действии АКТГ следует считать активацию фермента протеинкиназы в цитоплазме с участием цАМФ. Фосфорилированная протеинкиназа активирует фермент эстеразу, превращающий эфиры холестерина в свободное вещество в жировых каплях. Белок, синтезированный в цитоплазме в результате фосфорилирования рибосом, стимулирует связывание свободного холестерина с цитохромом Р-450 и перенос его из липидных капель в митохондрии, где присутствуют все ферменты, обеспечивающие превращение холестерина в кортикостероиды.

Тиреотропный гормон

ТТГ - тиреотропин - основной регулятор развития и функционирования щитовидной железы, процессов синтеза и секреции тиреоидных гормонов. Этот сложный белок - гликопротеид - состоит из альфа- и бета-субъединиц. Структура первой субъединицы совпадает с альфа-субъединицей лютеинизирующего гормона. Более того, она в значительной степени совпадает у разных видов животных. Последовательность аминокислотных остатков в бета-субъединице ТТГ человека расшифрована и состоит из 119 аминокислотных остатков. Можно отметить, что бета-субъединицы ТТГ человека и крупного рогатого скота во многом сходны. Биологические свойства и характер биологической активности гликопротеидных гормонов определяются бета-субъединицей. Она также обеспечивает взаимодействие гормона с рецепторами в различных органах-«мишенях». Однако бета-субъединица у большинства животных проявляет специфическую активность только после соединения ее с альфа-субъединицей, выступающей в роли своеобразного активатора гормона. При этом последняя с одинаковой вероятностью индуцирует лютеинизирующую, фолликулостимулирующую и тиреотропную активности, определяемые свойствами бета-субъединицы. Обнаруженное сходство позволяет сделать заключение о возникновении этих гормонов в процессе эволюции из одного общего предшественника, бета-субъединица обусловливает и иммунологические свойства гормонов. Есть предположение, что альфа-субъединица защищает бета-субъединицу от действия протеолитических ферментов, а также облегчает транспортировку ее из гипофиза к периферическим органам-«мишеням».

Гонадотропные гормоны

Гонадотропины представлены в организме в виде ЛГ и ФСГ. Функциональное предназначение этих гормонов в целом сводится к обеспечению репродуктивных процессов у особей обоего пола. Они, как и ТТГ, являются сложными белками - гликопротеидами. ФСГ индуцирует созревание фолликулов в яичниках у самок и стимулирует сперматогенез у самцов. ЛГ вызывает у самок разрыв фолликула с образованием желтого тела и стимулирует секрецию эстрогенов и прогестерона. У самцов этот же гормон ускоряет развитие интерстициальной ткани и секрецию андрогенов. Эффекты действия гонадотропинов зависимы друг от друга и протекают синхронно.

Динамика секреции гонадотропинов у женщин меняется в ходе менструального цикла и достаточно подробно изучена. В преовуляторную (фолликулярную) фазу цикла содержание ЛГ находится на довольно низком уровне, а ФСГ - увеличено. По мере созревания фолликула секреция эстрадиола повышается, что способствует повышению продуцирования гипофизом гонадотропинов и возникновению циклов как ЛГ, так и ФСГ, т. е. половые стероиды стимулируют секрецию гонадотропинов.

В настоящее время структура ЛГ определена. Как и ТТГ, он состоит из 2 субъединиц: а и р. Структура альфа-субъединицы ЛГ у разных видов животных в значительной степени совпадает, она соответствует строению алфьа-субъединицы ТТГ.

Структура бета-субъединицы ЛГ заметно отличается от строения бета-субъединицы ТТГ, хотя имеет четыре одинаковых участка пептидной цепи, состоящих из 4-5 аминокислотных остатков. В ТТГ они локализуются в положениях 27-31, 51-54, 65-68 и 78-83. Так как бета-субъединица ЛГ и ТТГ определяет специфическую биологическую активность гормонов, то можно предположить, что гомологичные участки в структуре ЛГ и ТТГ должны обеспечивать соединение бета-субъединиц с альфа-субъединицей, а разные по структуре участки - отвечать за специфичность биологической активности гормонов.

Нативный ЛГ очень стабилен к действию протеолитических ферментов, однако бета-субъединица быстро расщепляется химотрипсином, а а-субъединица трудно гидролизуется ферментом, т. е. она выполняет защитную роль, предотвращая доступ химотрипсина к пептидным связям.

Что касается химической структуры ФСГ, то в настоящее время исследователи не получили окончательных результатов. Так же, как и ЛГ, ФСГ состоит из двух субъединиц, однако бета-субъединица ФСГ отличается от бета-субъединицы ЛГ.

Пролактин

В процессах репродукции активное участие принимает еще один гормон - пролактин (лактогенный гормон). Основные физиологические свойства пролактина у млекопитающих проявляются в виде стимуляции развития молочных желез и лактации, роста сальных желез и внутренних органов. Он способствует проявлению эффекта стероидов на вторичные половые признаки у самцов, стимулирует секреторную активность желтого тела у мышей и крыс и участвует в регуляции жирового обмена. Много внимания уделяется пролактину в последние годы как к регулятору материнского поведения, такая полифункциональность объясняется его эволюционным развитием. Он один из древних гипофизарных гормонов и обнаруживается даже у амфибий. В настоящее время полностью расшифрована структура пролактина некоторых видов млекопитающих. Однако до последнего времени ученые высказывали сомнения в существовании такого гормона у человека. Многие считали, что его функцию выполняет гормон роста. Сейчас получены убедительные доказательства наличия пролактина у человека и частично расшифрована его структура. Рецепторы пролактина активно связывают гормон роста и плацентарный лактоген, что свидетельствует о едином механизме действия трех гормонов.

Соматотропин

Еще более широким спектром действия, чем пролактин, обладает гормон роста - соматотропин. Как и пролактин, он вырабатывается ацидофильными клетками аденогипофиза. СТГ стимулирует рост скелета, активирует биосинтез белка, дает жиромобилизующий эффект, способствует увеличению размеров тела. Кроме того, он координирует обменные процессы.

Участие гормона в последних подтверждается фактом резкого увеличения его секреции гипофизом, например, при снижении содержания сахара в крови.

Химическая структура этого гормона человека в настоящее время полностью установлена - 191 аминокислотный остаток. Первичная структура его аналогична строению хорионического соматомаммотропина или плацентарного лактогена. Эти данные указывают на значительную эволюционную близость двух гормонов, хотя они проявляют различия в биологической активности.

Необходимо подчеркнуть большую видовую специфичность рассматриваемого гормона - например, СТГ животного происхождения неактивен у человека. Это объясняется как реакцией между рецепторами СТГ человека и животных, так и строением самого гормона. В настоящее время ведутся исследования по выявлению активных центров в сложной структуре СТГ, проявляющих биологическую активность. Изучаются отдельные фрагменты молекулы, проявляющие иные свойства. Например, после гидролиза СТГ человека пепсином был выделен пептид, состоящий из 14 аминокислотных остатков и соответствующий участку молекулы 31-44. Он не обладал эффектом роста, но по липотропной активности значительно превосходил нативный гормон. Гормон роста человека, в отличие от аналогичного гормона животных, обладает значительной лактогенной активностью.

В аденогипофизе синтезируется много как пептидных, так и белковых веществ, обладающих жиромобилизующим действием, а тропные гормоны гипофиза - АКТГ, СТГ, ТТГ и другие - оказывают липотропное действие. В последние годы особо выделены бета- и у-липотропные гормоны (ЛПГ). Наиболее подробно изучены биологические свойства бета-ЛПГ, который, помимо липотропной активности, оказывает также меланоцитостимулирующее, кортикотропинстимулирующее и гипокальциемическое действие, а также дает инсулиноподобный эффект.

В настоящее время расшифрована первичная структура овечьего ЛПГ (90 аминокислотных остатков), липотропных гормонов свиньи и крупного рогатого скота. Этот гормон имеет видовую специфичность, хотя структура центрального участка бета-ЛПГ у разных видов одинакова. Она определяет биологические свойства гормона. Один из фрагментов этого участка обнаруживается в структуре альфа-МСГ, бета-МСГ, АКТГ и бета-ЛПГ. Высказывается предположение, что эти гормоны в процессе эволюции возникли из одного и того же предшественника. у-ЛПГ обладает более слабой липотропной активностью, чем бета-ЛПГ.

Меланоцитостимулирующий гормон

Этот гормон, синтезирующийся в промежуточной доле гипофиза, по своей биологической функции стимулирует биосинтез кожного пигмента меланина, способствует увеличению размеров и количества пигментных клеток меланоцитов в кожных покровах земноводных. Эти качества МСГ используются при биологическом тестировании гормона. Различают два типа гормона: альфа- и бета-МСГ. Показано, что альфа-МСГ не обладает видовой специфичностью и имеет одинаковое химическое строение у всех млекопитающих. Молекула его представляет собой пептидную цепь, состоящую из 13 аминокислотных остатков. Бета-МСГ, напротив, обладает видовой специфичностью, и структура его различается у разных животных. У большинства млекопитающих молекула бета-МСГ состоит из 18 аминокислотных остатков, и только у человека она удлинена с аминного конца на четыре аминокислотных остатка. Следует отметить, что альфа-МСГ обладает некоторой адренокортикотропной активностью, и в настоящее время доказано его влияние на поведение животных и человека.

Окситоцин и вазопрессин

В задней доле гипофиза скапливаются вазопрессин и окситоцин, которые синтезируются в гипоталамусе: вазопрессин - в нейронах супраоптического ядра, а окситоцин - паравентрикуляторного. Далее они переносятся в гипофиз. Следует подчеркнуть, что в гипоталамусе вначале синтезируется предшественник гормона вазопрессина. Одновременно там же продуцируется белок-нейрофизин 1-го и 2-го типов. Первый связывает окситоцин, а второй - вазопрессин. Эти комплексы мигрируют в виде нейросекреторных гранул в цитоплазме вдоль аксона и достигают задней доли гипофиза, где нервные волокна заканчиваются в стенке сосудов и содержимое гранул поступает в кровь. Вазопрессин и окситоцин - первые гипофизарные гормоны с полностью установленной аминокислотной последовательностью. По своей химической структуре они представляют собой нонапептиды с одним дисульфидным мостиком.

Рассматриваемые гормоны дают разнообразные биологические эффекты: стимулируют транспорт воды и солей через мембраны, оказывают вазопрессорное действие, усиливают сокращения гладкой мускулатуры матки при родах, повышают секрецию молочных желез. Следует отметить, что вазопрессин обладает более высокой, чем окситоцин, антидиуретической активностью, тогда как последний сильнее действует на матку и молочную железу. Основным регулятором секреции вазопрессина является потребление воды, в почечных канальцах он связывается с рецепторами в цитоплазматических мембранах с последующей активацией в них фермента аденилатциклазы. За связывание гормона с рецептором и за биологический эффект отвечают разные участки молекулы.

Гипофиз, связанный через гипоталамус со всей нервной системой, объединяет в функциональное целое эндокринную систему, участвующую в обеспечении постоянства внутренней среды организма (гомеостаз). Внутри эндокринной системы гомеостатическая регуляция осуществляется на основе принципа обратной связи между передней долей гипофиза и железами-«мишенями» (щитовидная железа, кора надпочечников, гонады). Избыток гормона, вырабатываемого железой-«мишенью», тормозит, а его недостаток стимулирует секрецию и выделение соответствующего тропного гормона. В систему обратной связи включается гипоталамус. Именно в нем находятся чувствительные к гормонам желез-«мишеней» рецепторные зоны. Специфически связываясь с циркулирующими в крови гормонами и меняя ответную реакцию в зависимости от концентрации гормонов, рецепторы гипоталамуса передают свой эффект в соответствующие гипоталамические центры, которые координируют работу аденогипофиза, выделяя гипоталамические аденогипофизотропные гормоны. Таким образом, гипоталамус следует рассматривать как нейро-эндокринный мозг.

Использованная литература

  1. Лекции по анатомии и физиологии человека с основами патологии – Барышников С.Д. 2002
  2. Атлас анатомии человека – Билич Г.Л. – Том 1. 2014
  3. Анатомия по Пирогову – В. Шилкин, В. Филимонов – Атлас анатомии человека. 2013
  4. Атлас по анатомии человека – P.Tank, Th. Gest – Lippincott Williams & Wilkins 2008
  5. Атлас анатомии человека – Коллектив авторов – Схемы – Рисунки – Фотографии 2008
  6. Основы медицинской физиологии (второе издание) – Алипов H.H. 2013