Хромосомные мутации. Хромосомная мутация у человека: что это и какие несёт последствия

Ожидание рождения ребенка - самое прекрасное время для родителей, но также и самое страшное. Многие волнуются, что малыш может родиться с какими-либо недостатками, физическими или умственными отклонениями.

Наука не стоит на месте, есть возможность проверить на маленьких сроках беременности малыша на наличие отклонений в развитии. Практически все эти анализы могут показать, все ли нормально с ребенком.

Почему так происходит, что у одних и тех же родителей могут появиться на свет абсолютно разные дети - здоровый ребенок и ребенок с отклонениями? Это определяют гены. В рождении недоразвитого малыша или ребенка с физическими недостатками влияют генные мутации, связанные с изменением структуры ДНК. Поговорим об этом подробнее. Рассмотрим, как это происходит, какие генные мутации бывают, и их причины.

Что такое мутации?

Мутации - это физиологическое и биологическое изменение клеток в структуре ДНК. Причиной может стать облучение (при беременности нельзя делать снимки рентгеновские, на наличие травм и переломов), ультрафиолетовые лучи (долгое нахождение на солнце во время беременности или нахождение в комнате с включенными лампами ультрафиолетового света). Также такие мутации могут передаться и по наследству от предков. Все они распределяются на типы.

Генные мутации с изменением структуры хромосом или их количества

Это мутации, при которых строение и число хромосом изменены. Хромосомные участки могут выпадать или удваиваться, перемещаться в зону негомологическую, поворачиваться от нормы на сто восемьдесят градусов.

Причины появления такой мутации - это нарушение при кроссенговере.

Генные мутации связаны с изменением структуры хромосом или их количества, являются причиной серьезных расстройств и болезней у малыша. Такие заболевания неизлечимы.

Виды хромосомных мутаций

Всего различаются два вида основных хромосомных мутаций: численные и структурные. Анэуплоидии - это виды по количеству хромосом, то есть когда генные мутации связаны с изменением числа хромосом. Это возникновение дополнительной или нескольких последних, потеря какой-либо из них.

Генные мутации связаны с изменением структуры в том случае, когда хромосомы разрываются, а в дальнейшем воссоединяются, нарушив нормальную конфигурацию.

Виды численных хромосом

По числу хромосом мутации разделяют на анэуплоидии, то есть виды. Рассмотрим основные, выясним разницу.

  • трисомии

Трисомия - это возникновение в кариотипе лишней хромосомы. Самое распространенное явление - это появление двадцать первой хромосомы. Она становится причиной синдрома Дауна, или, как еще называют это заболевание - трисомия двадцать первой хромосомы.

Синдром Патау выявляется по тринадцатой, а по восемнадцатой хромосоме диагностируют Это все аутосомные трисомии. Прочие трисомии не являются жизнеспособными, они погибают в утробе и теряются при самопроизвольных абортах. Те индивидуумы, у которых возникают дополнительные половые хромосомы (X, Y), - жизнеспособны. Клиническое проявление таких мутаций весьма незначительно.

Генные мутации, связанные с изменением числа, возникают по определенным причинам. Трисомии чаще всего могут возникнуть при расхождении в анафазе (мейоз 1). Результатом такого расхождения является то, что обе хромосомы попадают только в одну из двух дочерних клеток, вторая остается пустой.

Реже может возникнуть нерасхождение хромосом. Это явление называют нарушением в расхождении сестринских хроматид. Возникает в мейозе 2. Это именно тот случай, когда две совершенно одинаковые хромосомы селятся в одной гамете, вызывая трисомную зиготу. Нерасхождение происходит в ранние стадии процесса дробления яйцеклетки, которая была оплодотворена. Таким образом, возникает клон клеток-мутантов, который может охватить большую или меньшую часть тканей. Иногда проявляется клинически.

Многие связывают двадцать первую хромосому с возрастом беременной женщины, но этот фактор до сегодняшнего дня не имеет однозначного подтверждения. Причины, по которым не расходятся хромосомы, остаются неизвестными.

  • моносомии

Моносомией называют отсутствие любой из аутосом. Если такое происходит, то в большинстве случаев плод невозможно выносить, случаются преждевременные роды на ранних сроках. Исключение - моносомия по причине двадцать первой хромосомы. Причиной, по которой возникает моносомия, может стать и нерасхождение хромосом, и потеря хромосомы во время ее пути в анафазе к клетке.

По половым хромосомам моносомия приводит к образованию плода, у которого кариотип ХО. Клиническое проявление такого кариотипа - синдром Тернера. В восьмидесяти процентах случаев из ста появление моносомии по Х-хромосоме происходит из-за нарушения мейоза папы ребенка. Это связано с нерасхождением Х и Y хромосом. В основном плод с кариотипом ХО погибает в утробе матери.

По половым хромосомам трисомия разделяется на три вида: 47 XXY, 47 XXX, 47 XYY. является трисомией 47 XXY. С таким кариотипом шансы выносить ребенка делятся пятьдесят на пятьдесят. Причиной такого синдрома может стать нерасхождение хромосом Х или нерасхождение Х и Y сперматогенеза. Второй и третий кариотипы могут возникнуть только у одной из тысячи беременных женщин, они практически не проявляются и в большинстве случаев обнаруживаются специалистами совершенно случайно.

  • полиплоидия

Это генные мутации, связанные с изменением гаплоидного набора хромосом. Эти наборы могут быть утроенными и учетверенными. Триплоидия чаще всего диагностируется уже только тогда, когда произошел спонтанный аборт. Было несколько случаев, когда матери удавалось выносить такого малыша, но все они погибали, не достигнув и месячного возраста. Механизмы генных мутаций в случае триплодии обуславливают полным расхождением и нерасхождением всех хромосомных наборов либо женских, либо мужских половых клеток. Также механизмом может послужить двойное оплодотворение одной яйцеклетки. В этом случае происходит перерождение плаценты. Такое перерождение называют пузырным заносом. Как правило, такие изменения ведут к развитию у малыша умственных и физиологических нарушений, прерыванию беременности.

Какие генные мутации связаны с изменением структуры хромосом

Структурные изменения хромосом являются следствием разрыва (разрушения) хромосомы. В результате эти хромосомы соединяются, нарушив прежний свой вид. Эти видоизменения могут быть несбалансированными и сбалансированными. Сбалансированные не имеют излишка или недостатка материала, поэтому не проявляются. Проявиться они могут только в тех случаях, если на месте разрушения хромосомы был ген, который является функционально важным. У сбалансированного набора могут появиться гаметы несбалансированные. В следствии оплодотворение яйцеклетки такой гаметой может стать причиной появления плода с несбалансированным хромосомным набором. При таком наборе у плода возникает целый ряд пороков развития, появляются тяжелые виды патологии.

Типы структурных видоизменений

Генные мутации происходят на уровне образования гаметы. Предотвратить этот процесс нельзя, равно как нельзя заведомо узнать, могут произойти. Структурных видоизменений есть несколько видов.

  • делеции

Это изменение связано с потерей части хромосомы. После такого разрыва хромосома становится более короткой, а ее оторванная часть теряется при дальнейшем делении клетки. Интерстициальные делеции - это тот случай, когда одна хромосома разрывается сразу в нескольких местах. Такие хромосомы обычно создают нежизнеспособный плод. Но есть и случаи, когда малыши выживали, но у них из-за такого набора хромосом был синдром Вольфа-Хиршхорна, "кошачий крик".

  • дупликации

Эти генные мутации происходят на уровне организации сдвоенных участков ДНК. В основном дупликация не может стать причиной таких патологий, которые вызывают делеции.

  • транслокации

Транслокация возникает из-за переноса генетического материала с одной хромосомы на другие. Если же происходит разрыв одновременно в нескольких хромосомах и они обмениваются сегментами, то это становится причиной возникновения реципроктной транслокации. Кариотип такой транслокации имеет всего сорок шесть хромосом. Сама же транслокация выявляется только при детальном анализе и изучении хромосомы.

Изменение последовательности нуклеотидов

Генные мутации связаны с изменением последовательности нуклеотидов, когда выражаются в видоизменении структур некоторых участков ДНК. По последствиям такие мутации делятся на два типа - без сдвига рамки считывания и со сдвигом. Чтобы точно знать причины изменения участков ДНК, нужно рассмотреть каждый тип отдельно.

Мутация без сдвига рамки

Эти генные мутации связаны с изменением и заменой нуклеотидных пар в структуре ДНК. При таких заменах не теряется длина ДНК, но возможна потеря и замена аминокислот. Есть вероятность того, что структура белка сохранится, этим послужит Рассмотрим детально оба варианта развития: с заменой и без замены аминокислот.

Мутация с заменой аминокислот

Замена остатка аминокислоты в составе полипептидов называют миссенс-мутациями. В гемоглобиновой молекуле человека есть четыре цепи - две "а" (она размещена в шестнадцатой хромосоме) и две "b" (кодировка в одиннадцатой хромосоме). Если "b" - цепь нормальная, и в ее составе есть сто сорок шесть остатков аминокислот, а шестым является глутаминовая, то гемоглобин будет нормальным. В этом случае кислота глутаминовая должна быть закодирована триплетом ГАА. Если за счет мутации ГАА заменен на ГТА, то вместо глутаминовой кислоты в молекуле гемоглобина образуется валин. Таким образом, вместо нормального гемоглобина HbA появится другой гемоглобин HbS. Таким образом, замена одной аминокислоты и одного нуклеотида станет причиной серьезного тяжелого заболевания - анемии серповидноклеточной.

Эта болезнь проявляется тем, что эритроциты становятся по форме, как серп. В таком виде они не способны нормально доставлять кислород. Если на клеточном уровне гомозиготы имеют формулу HbS/HbS, то это ведет к смерти ребенка в самом раннем детстве. Если формула HbA/HbS, то эритроциты имеют слабую форму изменения. Такое слабое изменение имеет полезное качество - устойчивость организма к малярии. В тех странах, где есть опасность заразиться малярией такая же, как в Сибири простудой, это изменение несет полезное качество.

Мутация без замены аминокислот

Замены нуклеотидов без обмена аминокислотами называются сеймсенс-мутациями. Если в участке ДНК, кодирующем "b"- цепь произойдет замена ГАА на ГАГ, то из-за того, что окажется в избытке, замены глутаминовой кислоты не может произойти. Структура цепи не будет изменена, в эритроцитах не будет видоизменений.

Мутации со сдвигом рамки

Такие генные мутации связаны с изменением длины ДНК. Длина может стать меньше или больше, в зависимости от потери или прибавления нуклеотидных пар. Таким образом, будет изменена полностью вся структура белка.

Может произойти внутригенная супрессия. Это явление происходит, когда есть место двум мутациям, компенсирующим друг друга. Это момент присоединения нуклеотидной пары после того, как одна была утеряна, и наоборот.

Нонсенс-мутации

Это особая группа мутаций. Она происходит редко, в ее случае происходит появление стоп-кодонов. Это может случиться как при утрате пар нуклеотидов, так и при их присоединении. Когда появляются стоп-кодоны, синтез полипептидов полностью останавливается. Так могут образоваться нуль-аллели. Этому не будет соответствовать ни один из белков.

Есть такое понятие, как межгенная супрессия. Это такое явление, когда мутация одних генов подавляет мутации в других.

Выявляются ли изменения при беременности?

Генные мутации, связанные с изменением числа хромосом, в большинстве случаев можно определить. Чтобы узнать, есть ли у плода пороки в развитии и патологии, на первых неделях беременности (с десяти до тринадцати недель) назначают скрининг. Это ряд простых обследований: забор на анализы крови из пальца и вены, УЗИ. На ультразвуковом исследовании плод рассматривают в соответствии с параметрами всех конечностей, носа и головы. Эти параметры при сильном несоответствии нормам указывают на то, что у малыша есть пороки в развитии. Подтверждается или опровергается этот диагноз на основании результатов анализа крови.

Также под пристальным наблюдением медиков оказываются будущие мамы, у малышей которых могут возникнуть мутации на генном уровне, передающиеся по наследству. То есть это те женщины, в родне которых были случаи рождения ребенка с умственными или физическими отклонениями, выявленными синдромами Дауна, Патау и прочими генетическими заболеваниями.

Все мутации, связанные с изменением числа и структуры хромосом, можно разделить на три группы:

· хромосомные аберрации, обусловленные изменением структуры хромосом,

· геномные мутации, обусловленные изменением числа хромосом,

· миксоплоидии- мутации, обусловленные наличием разных по хромосомным наборам клонов клеток.

Хромосомные аберрации. Хромосомные аберрации (хромосомные мутации) - это изменения в структуре хромосом. Являются, как правило, следствием неравного кроссинговера при мейозе. К хромосомным аберрациям приводят также разрывы хромосом, вызванные ионизирующей радиацией, некоторыми химическими мутагенами, вирусами и др. мутагенными факторами. Хромосомные аберрации могут быть несбалансированными и сбалансированными.

При несбалансированных мутациях происходит потеря или увеличение генетического материала, изменяется число генов или их активность. Это приводит к изменению фенотипа.

Хромосомные перестройки, которые не приводят к изменению генов или их активности и не изменяют фенотип, называются сбалансированными. Однако, хромосомная аберрация нарушает конъюгацию хромосом и кроссинговер при мейозе, что приводит к появлению гамет с несбалансированными хромосомными мутациями. У носителей сбалансированных хромосомных аберраций может быть бесплодие, высокая частота спонтанных абортов, высокий риск рождения детей с хромосомными болезнями.

Выделяют следующие типы хромосомных мутаций

1. Делеция, или нехватка, - потеря участка хромосомы.

2. Дупликация – удвоение участка хромосомы.

3. Инверсия – поворот участка хромосомы на 180 0 (в одном из участков хромосомы гены расположены в последовательности, обратной по сравнению с нормальной). Если в результате инверсии не изменяется количество хромосомного материала и нет эффекта положения, то индивиды фенотипически здоровы. Часто встречается перицентрическая инверсия 9 хромосомы, которая не приводит к изменению фенотипа. При других инверсиях могут нарушаться конъюгация и кроссинговер, что приводит к разрывам хромосом и образованию несбалансированных гамет.

4. Кольцевая хромосома - возникает при утрате двух теломерных фрагментов. «Липкие» концы хромосомы соединяются, образуя кольцо.

Эта мутация может быть как сбалансированной, так и несбалансированной (в зависимости от объема хромосомного материала, который теряется).

5. Изохромосомы– потеря одного плеча хромосомы и дупликация другого. В результате образуется метацентрическая хромосома, имеющая два одинаковых плеча. Чаще встречается изохромосома по длинному плечу Х – хромосомы. Кариотип записывают: 46,Х,i(Xq). Изохромосома Х наблюдается в 15% всех случаев синдрома Шерешевского-Тернера.

6. Транслокация - перенос участка хромосомы на негомологичную хромосому, в другую группу сцепления. Выделяют несколько типов транслокаций:

а) Реципрокные транслокации - взаимный обмен участками между двумя негомологичными хромосомами.

В популяциях частота реципрокных транслокаций 1:500. По невыясненным причинам чаще встречается реципрокная транслокация, вовлекающая длинные плечи 11 и 22 хромосом. У носителей сбалансированных реципрокных транслокаций часто наблюдаются спонтанные аборты или рождение детей с множественными врожденными пороками развития. Генетический риск у носитедей таких транслокаций колеблется от 1 до 10%.

б) Нереципрокные транслокации (транспозиции) – перемещение участка хромосомы либо внутри той же хромосомы либо в другую хромосому без взаимного обмена.

в) Особый вид транслокаций - робертсоновские транслокации (или центрические слияния).

Наблюдается между любыми двумя акроцентрическими хромосомами из группы Д (13,14 и 15 пары) и G (21 и 22 пары). При центрическом слиянии две гомологичные или негомологичные хромосомы теряют короткие плечи и одну центромеру, длинные плечи соединяются. Вместо двух хромосом образуется одна, содержащая генетический материал длинных плеч двух хромосом. Таким образом, носители робертсоновских транслокаций здоровы, но у них повышена частота спонтанных абортов и высокий риск рождения детей с хромосомными болезнями. Частота робертсоновских транслокаций в популяции составляет 1:1000.

Иногда один из родителей является носителем сбалансированной транслокации, при которой наблюдается центрическое слияние двух гомологичных хромосом группы D или G. У таких людей образуется два типа гамет. Например, при транслокации 21q21q образуются гаметы:

2) 0 - т.е. гамета без хромосомы 21

После оплодотворения нормальной гаметой образуется два типа зигот: 1)21, 21q21q - транслокационная форма синдрома Дауна, 2)21,0 - моносомия 21хромосомы, летальная мутация. Вероятность рождения больного ребенка составляет 100%.

Р 21q21q х 21,21

здоровый носитель норма

сбалансированной


Гаметы 21/21; 0 21

F 1 21,21q21q 21,0

синдром Дауна летальная

7. Центрическое разделение - явление, обратное центрическому слиянию. Одна хромосома делится на две.



Делеции и дупликации изменяют число генов в организме. Инверсии, транслокации, транспозиции изменяют расположение генов в хромосомах.

9. Маркерная хромосома – это добавочная хромосома (вернее фрагмент какой-либо хромосомы с центромерой). Обычно имеет вид очень короткой акроцентрической хромосомы, реже – кольцевидной. Если маркерная хромосома содержит только гетерохроматин, то фенотип не меняется. Если же она содержит эухроматин (экспрессирующиеся гены), то это сопряжено с развитием хромосомной болезни (аналогично дупликации какого-либо участка хромосомы).

Значение хромосомных мутаций в эволюции. Хромосомные мутации играют большую роль в эволюции. В процессе эволюции происходит активная перестройка хромосомного набора посредством инверсий, робертсоновских транслокаций и других. Чем дальше друг от друга отстоят организмы, тем сильнее отличается их хромосомный набор.

Геномные мутации. Геномные мутации - это изменение числа хромосом. Различают два вида геномных мутаций:

1) полиплоидию,

2) гетероплоидию (анеуплоидию).

Полиплоидия – увеличение числа хромосом на величину, кратную гаплоидному набору (3n, 4n...). У человека описана триплоидия (3n=69 хромосом) и тетраплоидия (4n = 92 хромосомы).

Возможные причины формирования полиплоидии.

1) Полиплоидия может быть следствием нерасхождения всех хромосом при мейозе у одного из родителей В результате образуется диплоидная половая клетка (2n). После оплодотворения нормальной гаметой сформируется триплоид (3n).

2) Оплодотворение яйцеклетки двумя сперматозоидами (диспермия).

3) Возможно также слияние диплоидной зиготы с направительным тельцем, что приводит к формированию триплоидной зиготы

4) Может наблюдаться соматическая мутация - нерасхождение всех хромосом при делении клеток эмбриона (нарушение митоза). Это приводит к появлению тетраплоида (4 n) - полного или мозаичной формы.

Триплоидия (рис.___) является частой причиной спонтанных абортов. У новорожденных это чрезвычайно редкое явление. Большинство триплоидов погибают вскоре после рожения.

Триплоиды, имеющие два хромосомных набора отца и один хромосомный набор матери, как правило, формируют пузырный занос. Это эмбрион, у которого формируются внезародышевые органы (хорион, плацента, амнион), а эмбриобласт практически не развивается. Пузырные заносы абортируются, Возможно формирование злокачественной опухоли хориона – хориокарциномы. В редких случаях эмбриобласт формируется и беременность заканчивается рождением нежизнеспособного триплоида с множественными врожденными пороками развития. Характерно в таких случаях увеличение массы плаценты и кистозное перерождение ворсин хориона.

У триплоидов, имеющих два хромосомных набора матери и один хромосомный набор отца, развивается преимущественно эмбриобласт. Развитие внезародышевых органов нарушено. Поэтому такие триплоиды рано абортируются.

На примере триплоидов наблюдается разная функциональная активность отцовского и материнского геномов в эмбриональном периоде развития. Такое явление получило названием геномного импринтинга . В целом, следует отметить, что для нормального эмбрионального развития человека абсолютно необходим геном матери и геном отца. Партеногенетическое развитие человека (и других млекопитающих) невозможно.

Тетраплоидия (4n) – чрезвычайно редкое явление у человека. В основном обнаружено в материалах спонтанных абортов.

Гетероплоидия (или анеуплоидия ) - увеличение или уменьшение числа хромосом на 1,2 или большее число. Виды гетероплоидии: моносомия, нулисомия, полисомии (три-, тетра-, пентасомии).

а) Моносомия - отсутствие одной хромосомы (2n-1)

б) Нулисомия - отсутствие одной пары хромосом (2n-2)

в)Трисомия - одна лишняя хромосома (2n+1)

г)Тетрасомия - две лишнее хромосомы (2n+2)

д) Пентасомия – три лишние хромосомы (2n+3)


Мутационная изменчивость возникает в случае появления мутаций - стойких изменений генотипа (т.е. молекул днк), которые могут затрагивать целые хромосомы, их части или отдельные гены.

Мутации могут быть полезными, вредными или нейтральными. Согласно современной классификации мутации принято делить на следующие группы.

1. Геномные мутации - связанные с изменением числа хромосом. Особый интерес представляет ПОЛИПЛОИДИЯ - кратное увеличение числа хромосом, т.е. вместо 2n хромосомного набора возникает набор 3n,4n,5n и более. Возникновение полиплоидии связанно с нарушением механизма деления клеток. В частности, нерасхождение гомологичных хромосом во время первого деления мейоза приводит к появлению гамет с 2n набором хромосом.

Полиплоидия широко распространена у растений и значительно реже у животных (аскарид, шелкопряда, некоторых земноводных). Полиплоидные организмы, как правило, характеризуются более крупными размерами, усиленным синтезом органических веществ, что делает их особенно ценными для селекционных работ.

Изменение числа хромосом, связанное с добавлением или потерей отдельных хромосом, называется анеуплоидией. Мутацию анеуплоидии можно записать как 2n-1, 2n+1, 2n-2 и т.д. Анеуплоидия свойственна всем животным и растениям. У человека ряд заболеваний связан именно с анеуплоидией. Например, болезнь Дауна связана с наличием лишней хромосомы в 21-й паре.

2. Хромосомные мутации - это перестройки хромосом, изменение их строения. Отдельные участки хромосом могут теряться, удваиваться, менять свое положение.

Схематично это можно показать следующим образом:

ABCDE нормальный порядок генов

ABBCDE удвоение участка хромосомы

ABDE потеря одного участка

ABEDC поворот участка на 180 градусов

ABCFG обмен участками с негомологичной хромосомой

Как и геномные мутации, хромосомные мутации играют огромную роль в эволюционных процессах.

3. Генные мутации связаны с изменением состава или последовательности нуклеотидов ДНК в пределах гена. Генные мутации наиболее важны среди всех категорий мутаций.

Синтез белка основан на соответствии расположения нуклеотидов в гене и порядком аминокислот в молекуле белка. Возникновение генных мутаций (изменение состава и последовательности нуклеотидов) изменяет состав соответствующих белков-ферментов и в итоге к фенотипическим изменениям. Мутации могут затрагивать все особенности морфологии, физиологии и биохимии организмов. Многие наследственные болезни человека также обусловлены мутациями генов.

Мутации в естественных условиях случаются редко - одна мутация определенного гена на 1000-100000 клеток. Но мутационный процесс идет постоянно, идет постоянное накопление мутаций в генотипах. А если учесть, что число генов в организме велико, то можно сказать, что в генотипах всех живых организмов имеется значительное число генных мутаций.

Мутации - это крупнейший биологический фактор, обуславливающий огромную наследственную изменчивость организмов, что дает материал для эволюции.

Причинами мутаций могут быть естественные нарушения в метаболизме клеток (спонтанные мутации), так и действие различных факторов внешней среды (индуцированные мутации). Факторы, вызывающие мутации называют мутагенами. Мутагенами могут быть физические факторы - радиация, температура.... К биологическим мутагена относят вирусы, способные осуществлять перенос генов между организмами не только близких, но далеких систематических групп.

Хозяйственная деятельность человека принесла в биосферу огромное количество мутагенов.

Большинство мутаций неблагоприятны для жизни особи, но иногда возникают такие мутации, которые могут представлять интерес для ученых-селекционеров. В настоящее время созданы методы направленного мутагенеза.

1. По характеру изменения фенотипа мутации могут быть биохимическими, физиологическими, анатомо-морфологическими.

2. По степени приспособительности мутации делятся на полезные и вредные. Вредные - могут быть летальными и вызывать гибель организма еще в эмбриональном развитии.

Чаще мутации вредны, так как признаки в норме являются результатом отбора и адаптируют организм к среде обитания. Мутация всегда изменяет адаптацию. Степень ее полезности или бесполезности определяется временем. Если мутация дает возможность организму лучше приспособиться, дает новый шанс выжить, то она "подхватывается" отбором и закрепляется в популяции.

3. Мутации бывают прямые и обратные. Последние встречаются гораздо реже. Обычно прямая мутация связана с дефектом функции гена. Вероятность вторичной мутации в обратную сторону в той же точке очень мала, чаще мутируют другие гены.

Мутации чаще рецессивные, так как доминантные проявляются сразу же и легко "отбрасываются" отбором.

4. По характеру изменения генотипа мутации делятся на генные, хромосомные и геномные.

Генные, или точковые, мутации - изменение нуклеотида в одном гене в молекуле ДНК, приводящее к образованию аномального гена, а следовательно, аномальной структуры белка и развитию аномального признака. Генная мутация - это результат "ошибки" при репликации ДНК.

Результатом генной мутации у человека являются такие заболевания, как серповиднокле-точная анемия, фенилкетонурия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

Хромосомные мутации - изменения структуры хромосом, хромосомные перестройки. Можно выделить основные типы хромосомных мутаций:

а) делеция - потеря участка хромосомы;

б) транслокация - перенос части хромосом на другую негомологичную хромосому, как результат - изменение группы сцепления генов;

в) инверсия - поворот участка хромосомы на 180°;

г) дупликация - удвоение генов в определенном участке хромосомы.

Хромосомные мутации приводят к изменению функционирования генов и имеют значение в эволюции вида.

Геномные мутации - изменения числа хромосом в клетке, появление лишней или потеря хромосомы как результат нарушения в мейозе. Кратное увеличение числа хромосом называется полиплоидией (Зп, 4/г и т. д.). Этот вид мутации часто встречается у растений. Многие культурные растения полиплоидны по отношению к диким предкам. Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека - трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

Закон гомологических рядов Н.И. Вавилова. Русский ученый-биолог Н.И. Вавилов установил характер возникновения мутаций у близкородственных видов: "Роды и виды, генетически близкие, характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида, можно предвидеть нахождение параллельных форм у других видов и родов".

Открытие закона облегчило поиски наследственных отклонений. Зная изменчивость и мутации у одного вида, можно предвидеть возможность их появления и у родственных видов, что имеет значение в селекции.



Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х- и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Хромосомные аномалии

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Развитие пола ребенка

В обычных условиях наличие Y-хромосомы приводит к развитию плода мужского пола вне зависимости от количества Х-хромосом, а отсутствие Y-хромосомы - к развитию плода женского пола. Аномалии половых хромосом оказывают менее деструктивное влияние на физические характеристики индивида (фенотип), нежели аномалии аутосомных. Y-хромосома содержит малое количество генов, поэтому ее лишние копии оказывают минимальное влияние. Как у мужчин, так и у женщин требуется наличие только одной активной Х-хромосомы. Лишние Х-хромосомы почти всегда являются полностью неактивными. Этот механизм минимизирует эффект аномальных Х-хромосом, поскольку лишние и структурно аномальные копии инактивируются, оставляя «рабочей» только одну нормальную Х-хромосому. Однако существуют на Х-хромосоме некоторые гены, которым удается избежать инактивации. Считается, что наличие одной или более двух копий таких генов является причиной аномальных фенотипов, ассоциированных с дисбалансом половых хромосом. В лаборатории анализ хромосом проводится под световым микроскопом при 1000-кратном увеличении. Хромосомы становятся видны только при делении клетки на две генетически идентичные дочерние клетки. Для получения хромосом используют клетки крови, которые культивируют в специальной среде, богатой питательными веществами. На определенной стадии деления клетки обрабатывают раствором, который вызывает их набухание, что сопровождается «распутыванием» и разделением хромосом. Затем клетки помещают на предметное стекло микроскопа. По мере их высыхания происходит разрыв клеточной мембраны с выходом хромосом во внешнюю среду. Хромосомы окрашивают таким образом, чтобы на каждой из них появились светлые и темные диски (полоски), порядок которых специфичен для каждой пары. Форму хромосом и характер дисков тщательно изучают с целью идентификации каждой хромосомы и выявления возможных аномалий. Количественные аномалии имеют место при недостатке или избытке хромосом. Некоторые синдромы, развивающиеся в результате таких дефектов, имеют очевидные признаки; другие бывают почти незаметны.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом: 45, X - синдром Тернера. 45, X, или отсутствие второй половой хромосомы, - самый распространенный кариотип при синдроме Тернера. Индивиды с этим синдромом имеют женский пол; часто заболевание диагностируют при рождении благодаря таким характерным признакам, как кожные складки на задней поверхности шеи, отечность кистей рук и стоп и низкая масса тела. К другим симптомам относятся низкорослость, короткая шея с крыловидными складками, широкая грудная клетка с широко расположенными сосками, пороки сердца и патологическое отклонение предплечий. Большинство женщин с синдромом Тернера бесплодны, у них отсутствуют менструации и не развиты вторичные половые признаки, в частности молочные железы. Практически все пациентки, однако, имеют нормальный уровень умственного развития. Частота встречаемости синдрома Тернера составляет от 1:5000 до 1:10 000 женщин.

■ 47, XXX - трисомия Х-хромосомы.

Приблизительно 1 из 1000 женщин имеет кариотип 47, XXX. Женщины с этим синдромом обычно высокие и худые, без каких-либо явных физических отклонений. Однако нередко у них отмечается снижение коэффициента интеллекта с определенными проблемами в обучении и поведении. Большинство женщин с трисомией Х-хромосомы фертильны и способны иметь детей с нормальным набором хромосом. Синдром редко выявляется благодаря нерезкой выраженности фенотипических признаков.

■ 47, XXY - синдром Клайнфельтера. Приблизительно 1 из 1000 мужчин имеет синдром Клайнфельтера. Мужчины с кариотипом 47, XXY выглядят нормальными при рождении и в раннем детстве, за исключением небольших проблем в обучении и поведении. Характерные признаки становятся заметными в период полового созревания и включают высокий рост, маленький размер яичек, отсутствие сперматозоидов, а иногда и недостаточное развитие вторичных половых признаков с увеличением грудных желез.

■ 47, XYY - XYY-синдром. Дополнительная Y-хромосома присутствует примерно у 1 из 1000 мужчин. Большинство мужчин с XYY-синдромом внешне выглядят нормально, но при этом имеют очень высокий рост и сниженный уровень интеллекта. Хромосомы по форме отдаленно напоминают букву X и имеют два коротких и два длинных плеча. Для синдрома Тернера типичны следующие аномалии: изохромосома по длинному плечу. В ходе образования яйцеклеток или сперматозоидов происходит разделение хромосом, при нарушении расхождения которых может появиться хромосома с двумя длинными плечами и полным отсутствием коротких; кольцевая хромосома. Образуется вследствие утраты концов коротких и длинных плеч Х-хромосомы и соединения оставшихся участков в кольцо; делеция (утрата) части короткого плеча одной из Х-хромосом. Аномалии длинного плеча Х-хромосомы обычно вызывают дисфункцию репродуктивной системы, например преждевременную менопаузу.

Y-хромосома

Ген, отвечающий за развитие зародыша по мужскому типу, находится на коротком плече Y-хромосомы. Делеция короткого плеча приводит к формированию женского фенотипа, часто с некоторыми признаками синдрома Тернера. Гены на длинном плече ответственны за фертильность, поэтому любые делеции здесь могут сопровождаться мужским бесплодием.

Введение

Хромосомные аномалии вызывают обычно целый комплекс нарушений в строении и функциях различных органов, а также поведенческие и психические расстройства. Среди последних нередко обнаруживается ряд типичных особенностей, таких как умственная отсталость той или иной степени, аутистические черты, неразвитость навыков социального взаимодействия, ведущие асоциальности и антисоциальности.

Причины изменения числа хромосом

Изменения числа хромосом возникают в результате нарушения клеточного деления, что может коснуться как сперматозоида, так и яйцеклетки. Иногда это приводит к хромосомным аномалиям

Хромосомы заключают в себе генетическую информацию в форме генов. Ядро каждой клетки человека, за исключением яйцеклетки и сперматозоида, содержит 46 хромосом, образующих 23 пары. Одна хромосома в каждой паре получена от матери, а другая - от отца. У обоих полов 22 из 23 пар хромосом одинаковые, отличается только оставшаяся пара половых хромосом. У женщин имеется две Х-хромосомы (XX), а у мужчин - одна Х - и одна Y-хромосома (XY). Следовательно, нормальный набор хромосом (кариотип) мужчины - 46, XY, а женщины - 46, XX.

Если ошибка происходит во время особой разновидности клеточного деления, при котором образуются яйцеклетки и сперматозоиды, то возникают аномальные половые клетки, что ведет к рождению потомства с хромосомной патологией. Хромосомный дисбаланс может быть как количественным, так и структурным.

Различают четыре основные количественные хромосомные аномалии, каждая из которых ассоциирована с определенным синдромом:

47, XYY - XYY-синдром;

47, XXY - синдром Клайнфельтера;

45, X - синдром Тернера;

47, XXX - трисомия.

хромосомная аномалия антисоциальность характерологический

Лишняя хромосома Y как причина антисоциальности

Кариотип 47, XYY проявляется только у мужчин. Характерные признаки людей, обладающих дополнительной Y - хромосомой высокий рост. При этом ускорение роста начинается в достаточно раннем возрасте и продолжается весьма долго.

Частота данного заболевания 0, 75 - 1 на 1000 человек. Цитогенетическое обследование, проведенное в 1965 г. в Америке выявило, что из 197 психических больных, содержащихся в качестве особо опасных в условиях строгого надзора, 7 из них имеют хромосомный набор XYY. По английским данным, среди преступников выше 184 см. примерно каждый четвертый имеет именно этот набор хромосом.

Большинство страдающих синдромом ХУУ не вступают в конфликт с законом; однако некоторая часть их легко поддается импульсам, приводящим к агрессии, к гомосексуализму, педофилии, воровству, поджогам; любое понуждение вызывает у них вспышки злобной ярости, очень слабо контролируемые задерживающими нервами. Вследствие двойной Y хромосомы, хромосома X становится "ломкой" и из носителя данного набора, получается, так сказать, своеобразный "сверх-мужчина".

Рассмотрим один из более нашумевших примеров данного явления в мире преступности.

В 1966 г. общественность была взбудоражена происшествием в Чикаго, когда человек по имени Ричард Спек жестоко убил восемь девушек, студенток медицинского колледжа.14 июля 1966 года его занесло на окраину Чикаго, где он постучался в дом, где жили девять студенток медицинского колледжа. Открывшей ему студентке он пообещал не причинять никому вреда, сказав, что ему просто нужны деньги для покупки билета до Нового Орлеана. Проникнув в дом, он собрал всех студенток в одной комнате, связав их. Узнав, где деньги он не успокоился и, выбрав одну из студенток увел ее из комнаты. Позже он пришел еще за одной. В это время одна из девушек, даже будучи связанной, умудрилась спрятаться под кроватью. Все остальные были убиты. Одну из девушек он изнасиловал. После этого он отправился в ближайший кабак "кутить" на вырученные 50 долларов. Через несколько дней он был пойман. В процессе следствия пытался покончить жизнь самоубийством. У Ричарда Спека, убийцы восьмерых студенток, при анализе крови была обнаружена лишняя хромосома Y - " хромосома преступления"

Вопрос о необходимости раннего выделения хромосомных аберрантов с кариотипом ХУУ, о необходимости особых мер ограждения от них и обычного населения, и преступников с меньшим потенциалом агрессивности уже широко обсуждается в зарубежной генетической и юридической литературе.

Взрослый мужчина, у которого впервые выявлен кариотип 47, XYY, нуждается в психологической поддержке; могут потребоваться медико-генетические консультации.

Поскольку поставленное на очередь кариологическое выделение лиц с синдромом XYY среди высокорослых преступников представляет собой технически трудоемкую задачу, появились экспресс-методы выявления лишней Y-хромосомы, а именно окрашивание мазков слизистой рта акрихинипритом и флуоресцентное микроскопирование (YY выделяется в виде двух светящихся точек).