Дифференцировка в процессе развития эмбриона. Специализация клеток

Дифференцировка и патология клеток

1. Дифференцировка клеток. Факторы и регуляция дифференцировки. Стволовая клетка и дифферон

Этот вопрос относится к числу наиболее сложных и в тоже время интересных как для цитологии, так и для биологии. Дифференцировка - это процесс возникновения и развития структурных и функциональных различий между первоначально однородными эмбриональными клетками, в результате которого образуются специализированные клетки, ткани и органы многоклеточного организма. Дифференцировка клеток является важнейшей составной частью процесса формирования многоклеточного организма. В общем случае дифференцировка необратима, т.е. высокодифференцированные клетки не могут превращаться в клетки другого типа. Это явление называется терминальной дифференцировкой и присуще преимущественно клеткам животных. В отличие от клеток животных, большинство клеток растений даже после дифференцировки способны переходить к делению и даже вступать на новый путь развития. Такой процесс называется дедифференцировкой. Например, при надрезе стебля некоторые клетки в зоне разреза начинают делиться и закрывают рану, другие вообще могут подвергаться дедифференцировке. Так клетки коры могут превратиться в клетки ксилемы и восстановить непрерывность сосудов в области повреждения. В экспериментальных условиях при культивировании растительной ткани в соответствующей питательной среде клетки образуют каллус. Каллус - это масса относительно недифференцированных клеток, полученная из дифференцированных клеток растений. При соответствующих условиях из одиночных клеток каллуса можно вырастить новые растения. При дифференцировке не происходит потерь или перестройки ДНК. Об этом убедительно свидетельствуют результаты экспериментов по пересадке ядер из дифференцированных клеток в недифференцированные. Так ядро из дифференцированной клетки вводили в энуклеированную яйцеклетку лягушки. В результате из такой клетки развивался нормальный головастик. Дифференцировка в основном происходит в эмбриональный период, а также на первых стадиях постэмбрионального развития. Кроме того, дифференцировка имеет место в некоторых органах взрослого организма. Например, в кроветворных органах стволовые клетки дифференцируются в различные клетки крови, а в гонадах - первичные половые клетки - в гаметы.

Факторы и регуляция дифференциации. На первых этапах онтогенеза развитие организма происходит под контролем РНК и других компонентов, находящихся в цитоплазме яйцеклетки. Затем на развитие начинают оказывать влияние факторы дифференцировки.

Выделяют два основных фактора дифференцировки:

1.Различия цитоплазмы ранних эмбриональных клеток, обусловленные неоднородностью цитоплазмы яйца.

2.Специфические влияния соседних клеток (индукция).

Роль факторов дифференцировки заключается в избирательной активации или инактивации тех или иных генов в различных клетках. Активность определенных генов приводит к синтезу соответствующих белков, направляющих дифференциацию. Синтезируемые белки могут блокировать или, напротив, активировать транскрипцию. Первоначально активация или инактивация разных генов зависит от взаимодействия тотипотентных ядер клеток со своей специфической цитоплазмой. Возникновение локальных различий в свойствах цитоплазмы клеток называется ооплазматической сегрегацией. Причина этого явления заключается в том, что в процессе дробления яйцеклетки участки цитоплазмы, различающиеся по своим свойствам, попадают в разные бластомеры. Наряду с внутриклеточной регуляцией дифференцировки с определенного момента включается надклеточный уровень регуляции. К надклеточному уровню регуляции относится эмбриональная индукция.

Эмбриональная индукция - это взаимодействие между частями развивающегося организма, в процессе которого одна часть (индуктор) входит в контакт с другой частью (реагирующей системой) и определяет развитие последней. Причем установлено не только воздействие индуктора на реагирующую систему, но и влияние последней на дальнейшую дифференцировку индуктора.

Под действием какого-либо фактора сначала происходит детерминация.

Детерминацией, или латентной дифференцировкой, называют явление, когда внешние признаки дифференцировки еще не проявились, но дальнейшее развитие ткани уже происходит независимо от фактора, вызвавшего их. Клеточный материал считают детерминированным со стадии, на которой он впервые при пересадке в новое место развивается в орган, который из него образуется в норме.

Стволовая клетка и дифферон. К числу перспективных направлений биологии XXI века относится изучение стволовых клеток. Сегодня исследования стволовых клеток по значимости сопоставимо с исследованиями по клонированию организмов. По мнению ученых применение стволовых клеток в медицине позволит лечить многие "проблемные" заболевания человечества (бесплодие, многие формы рака, диабет, рассеянный склероз, болезнь Паркинсона и др.).

Стволовая клетка - это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма.

Стволовые клетки подразделяют на эмбриональные стволовые клетки (их выделяют из эмбрионов на стадии бластоцисты) и региональные стволовые клетки (их выделяют из органов взрослых особей или из органов эмбрионов более поздних стадий). Во взрослом организме стволовые клетки находятся, в основном, в костном мозге и, в очень небольших количествах, во всех органах и тканях.

Свойства стволовых клеток. Стволовые клетки самоподдерживаются, т.е. после деления стволовой клетки одна клетка остается в стволовой линии, а вторая дифференцируются в специализированную. Такое деление называется несимметричным.

Функции стволовых клеток. Функция эмбриональных стволовых клеток заключается в передаче наследственной информации и образовании новых клеток. Основная задача региональных стволовых клеток - восстановление потерь специализированных клеток после естественной возрастной или физиологической гибели, а также в аварийных ситуациях.

Дифферон - это последовательный ряд клеток, образовавшийся из общего предшественника. Включает стволовые, полустволовые и зрелые клетки.

Например, стволовая клетка, нейробласт, нейрон или стволовая клетка, хондробласт, хондроцит и т. д.

Нейробласт - малодифференцированная клетка нервной трубки, превращающаяся в дальнейшем в зрелый нейрон.

Хондробласт - малодифференцированная клетка хрящевой ткани, превращающаяся в хондроцит (зрелая клетка хрящевой ткани).

Апоптоз и некроз

Апоптоз (с греч. - опадание листьев) - это генетически запрограммированная форма гибели клетки, необходимая в развитии многоклеточного организма и участвующая в поддержании тканевого гомеостаза. Апоптоз проявляется в уменьшении размера клетки, конденсации и фрагментации хроматина, уплотнении плазматической мембраны без выхода содержимого клетки в окружающую среду. Апоптоз обычно противопоставляется другой форме гибели клеток - некрозу, который развивается при воздействии внешних по отношению к клетке повреждающих агентов и неадекватных условий среды (гипоосмия, крайние значения рН, гипертермия, механические воздействия, действие агентов, повреждающих мембрану). Некроз проявляется набуханием клетки и разрывом мембраны вследствие повышения ее проницаемости с выходом содержимого клетки в среду. Первые морфологические признаки апоптоза (конденсация хроматина) регистрируются в ядре. Позже появляются вдавления ядерной мембраны и происходит фрагментация ядра. Отшнуровавшиеся фрагменты ядра, ограниченные мембраной, обнаруживаются вне клетки, их называют апоптотическими тельцами. В цитоплазме происходят расширение эндоплазматической сети, конденсация и сморщивание гранул. Важнейшим признаком апоптоза является снижение трансмембранного потенциала митохондрий. Клеточная мембрана утрачивает ворсинчатость, образует пузыревидные вздутия. Клетки округляются и отделяются от субстрата. Проницаемость мембраны повышается лишь в отношении небольших молекул, причем это происходит позже изменений в ядре. Одной из наиболее характерных особенностей апоптоза является уменьшение объема клетки в противоположность ее набуханию при некрозе. Апоптоз поражает индивидуальные клетки и практически не отражается на их окружении. В результате фагоцитоза, которому клетки подвергаются уже в процессе развития апоптоза, их содержимое не выделяется в межклеточное пространство. Напротив, при некрозе вокруг гибнущих клеток скапливаются их активные внутриклеточные компоненты, закисляется среда. В свою очередь это способствует гибели других клеток и развитию очага воспаления. Сравнительная характеристика апоптоза и некроза клеток приведена в таблице 1.

Таблица 1. Сравнительная характеристика апоптоза и некроза клеток

ПризнакАпоптозНекрозРаспространенностьОдиночная клеткаГруппа клетокПусковой факторАктивируется физиологическими или патологическими стимуламиСкорость развития, часов1-12В пределах 1Изменение размера клеткиУменьшение Увеличение Изменения клеточной мембраныПотеря микроворсинок, образование вздутий, целостность не нарушенаНарушение целостностиИзменения ядраКонденсация хроматина, пикноз, фрагментацияНабуханиеИзменения в цитоплазмеКонденсация цитоплазмы, уплотнение гранулЛизис гранулЛокализация первичного поврежденияВ ядреВ мембранеПричины гибели клеткиДеградация ДНК, нарушение энергетики клеткиНарушение целостности мембраныСостояние ДНКРазрывы с образованием сначала крупных, затем мелких фрагментовНеупорядоченная деградацияЭнергозависимостьЗависитНе зависитВоспалительный ответНетОбычно естьУдаление погибших клетокФагоцитоз соседними клеткамиФагоцитоз нейтрофилами и макрофагамиПримеры проявленияМетаморфозГибель клеток от гипоксии, токсинов

Апоптоз универсально распространен в мире многоклеточных организмов: аналогичные ему проявления описаны у дрожжей, трипаносом и некоторых других одноклеточных. Апоптоз рассматривается как условие нормального существования организма.

В организме апоптоз выполняет следующие функции:

§поддержание постоянства численности клеток. Наиболее простой иллюстрацией значимости апоптоза для многоклеточного организма являются данные о роли этого процесса в поддержании постоянной численности клеток нематоды Caenorhabditis elegans.

§защита организма от возбудителей инфекционных заболеваний, в частности, от вирусов. Многие вирусы вызывают такие глубокие нарушения в обмене веществ зараженной клетки, что она реагирует на эти нарушения запуском программы гибели. Биологический смысл такой реакции заключается в том, что смерть зараженной клетки на ранней стадии, предотвратит распространение инфекции по организму. Правда, у некоторых вирусов выработались специальные приспособления для подавления апоптоза в заражаемых клетках. Так в одних случаях в генетическом материале вируса закодированы вещества, выполняющие роль клеточных антиапоптозных белков-регуляторов. В других случаях вирус стимулирует синтез клеткой ее собственных антиапоптозных белков. Таким образом, создаются предпосылки для беспрепятственного размножения вируса.

§удаление генетически дефектных клеток. Апоптоз является важнейшим средством естественной профилактики раковых новообразований. Есть специальные гены, контролирующие нарушения в генетическом материале клетки. В случае необходимости эти гены сдвигают равновесие в пользу апоптоза, и потенциально опасная клетка гибнет. Если такие гены мутируют, то в клетках развиваются злокачественные новообразования.

§определение формы организма и его частей;

§обеспечение правильного соотношения численности клеток различных типов;

Интенсивность апоптоза выше в начальные периоды онтогенеза, в частности во время эмбриогенеза. Во взрослом организме апоптоз продолжает играть большую роль лишь в быстро обновляющихся тканях.

клетка опухолевый дифференциация

3. Опухолевая трансформация клеток

Мы многое узнали о том, как живет и эволюционирует клетка, хотя недостаточно - о том, как предотвращать рак. Скорее наоборот: мы увидели многообразие факторов и механизмов, которые его индуцируют, а это ослабляет надежду на универсальные способы терапии. Поэтому вспоминаются слова Екклесиаста: во многой мудрости много печали; и кто умножает познания, умножает скорбь. Но ученые работают".

Хесин Р.Б., советский ученый

Проблема онкологических заболеваний является одной из главных для современного общества. По прогнозам Всемирной организации здравоохранения заболеваемость и смертность онкологическими заболеваниями во всем мире за период с 1999 года по 2020 год возрастет в 2 раза (с 10 до 20 млн. новых случаев и с 6 до 12 млн. регистрируемых смертей).

Опухолью называют избыточные патологические разрастания тканей, состоящих из качественно изменившихся, утративших дифференцировку клеток организма.

Термин "рак" пришел к нам с древних времен. В те времена болезнь называли по основному, наиболее заметному, признаку заболевания. По аналогии между выростами злокачественной опухоли в окружающие ее ткани и конечностями рака, это заболевание получило название рак (по лат. cancer). Этот древний термин в наше время хорошо известен всем и пугает каждого. При общении с больными его лучше не использовать.

В возникновении опухолей определяющим являются два фактора: возникновение измененной клетки (трансформация) и наличие условий для ее беспрепятственного роста и размножения в организме.

На протяжении всей жизни в многоклеточном организме происходит огромное число клеточных делений. Например, в человеческом организме это число составляет приблизительно 1016. Периодически в соматических клетках возникают мутации, в том числе и те, которые могут привести к образованию опухолевых клеток. Причем чем больше циклов деления прошла клетка, тем больше вероятность появления дефектных клеток в ее потомстве. Это объясняет резкое увеличение вероятности возникновения онкологических заболеваний с возрастом. Более 50% всех случаев рака выявляются у людей в возрасте б5 лет и старше. Статистические данные показывают, что если принять смертность от рака в 20-летнем возрасте за единицу, то после 50 летнего возраста риск умереть от этого заболевания увеличится в десятки раз.

С образовавшимися дефектными клетками организм борется с помощью иммунной системы. Поскольку возникновение дефектных клеток неизбежно, по всей вероятности, именно нарушения иммунной системы являются определяющими в развитии опухолей. Концепция о роли иммунных механизмов в развитии злокачественных новообразований была выдвинута еще в 1909 г. Эрлихом. Исследования последних лет подтвердили существенную роль иммунодефицитных состояний в развитии опухолей.

Очевидно, что чем больше в организме появляется дефектных клеток, тем выше вероятность пропуска таких клеток со стороны иммунной системы. Трансформацию клеток вызывают канцерогенные факторы.

Канцерогенными факторами называются факторы внешней и внутренней среды, которые могут быть причинами возникновения и развития опухолей.

К факторам внутренней среды условия местонахождения клетки, генетическую предрасположенность организма. Так в чем более неблагоприятных условиях находится клетка, тем больше вероятность возникновения ошибок при ее делении. Травматизация кожи, слизистых оболочек или других тканей организма любыми механическими или химическими раздражителями ведет к увеличению риска возникновения опухоли в этом месте. Именно это определяет повышенный риск возникновения рака тех органов, слизистая которых подвергается наиболее интенсивной естественной нагрузке: рака легких, желудка, толстого кишечника и др. Постоянно травмируемые родинки или рубцы, длительно не заживающие изъязвления так же ведут к интенсивному клеточному делению в неблагоприятных условиях и повышению этого риска. В развитии некоторых опухолей важное значение имеют генетические факторы. У животных роль генетической предрасположенности экспериментально подтверждена на примере высоко- и низкораковых линий мышей.

Внешние канцерогенные факторы условно можно разделить на три основные группы: физические, химические и биологические.

К физическим факторам относится ионизирующее излучение - радиация. В последние десятилетия возникло и достигло больших масштабов загрязнение Земли радионуклидами в результате хозяйственной деятельности человека. Выброс радионуклидов происходит в результате аварий на атомных электростанциях и атомных подводных лодках, сброса в атмосферу слабоактивных отходов с ядерных реакторов и пр. К химическим факторам относятся различные химические вещества (компоненты табачного дыма, бензпирен, нафтиламин, некоторые гербициды и инсектициды, асбест и др.). Источником большинства химических канцерогенов в окружающей среде являются выбросы промышленного производства. К биологическим факторам относятся вирусы (вирус гепатита В, аденовирус и некоторые другие).

По характеру и темпам роста принято различать доброкачественные и злокачественные опухоли.

Доброкачественные опухоли растут относительно медленно и могут существовать годами. Они окружены собственной оболочкой. При росте, увеличиваясь, опухоль отодвигает окружающие ткани, не разрушая их. Клетки доброкачественной опухоли незначительно отличаются от нормальных клеток, из которых опухоль развивалась. Поэтому доброкачественные опухоли носят названия тканей, из которых они развились, с добавлением суффикса "ома" от греческого термина "онкома" (опухоль). Например, опухоль из жировой ткани называется липома, из соединительной - фиброма, из мышечной - миома и т. д. Удаление доброкачественной опухоли с ее оболочкой ведет к полному излечению больного.

Злокачественные опухоли растут значительно быстрее и не имеют собственной оболочки. Опухолевые клетки и тяжи их проникают в окружающие ткани и повреждают их. Прорастая в лимфатический или кровеносный сосуд, они током крови или лимфы могут переноситься в лимфатические узлы или отдаленные органы с образованием там вторичного очага опухолевого роста - метастаза. Клетки злокачественной опухоли значительно отличаются от клеток, из которой они развились. Клетки злокачественной опухоли атипичны, у них изменена клеточная мембрана и цитоскелет, из-за чего они имеют более или менее округлую форму. Опухолевые клетки могут содержать несколько ядер, не типичных по форме и размерам. Характерным признаком опухолевой клетки является утрата дифференцировки и вследствие этого потеря специфической функции.

Напротив, нормальным клеткам присущи все свойства полностью дифференцированных клеток, выполняющих в организме определенные функции. Эти клетки полиморфны и их форма определяется структурированным цитоскелетом. Нормальные клетки организма обычно делятся до образования контактов с соседними клетками, после чего деление останавливается. Такое явление известно как контактное торможение. Исключение составляют эмбриональные клетки, эпителий кишечника (постоянная замена отмирающих клеток), клетки костного мозга (кроветворная система) и опухолевые клетки. Таким образом, важнейшим отличительным признаком опухолевых клеток является неконтролируемая пролиферация считается

Превращение нормальной клетки в трансформированную - процесс многостадийный.

1.Инициация. Почти каждая опухоль начинается с повреждения ДНК в отдельной клетке. Этот генетический дефект может быть вызван канцерогенными факторами, например компонентами табачного дыма, УФ-излучением, рентгеновскими лучами, онкогенными вирусами. По-видимому, в течение человеческой жизни немалое число клеток организма из общего их числа 1014 претерпевает повреждение ДНК. Однако для инициации опухоли важны лишь повреждения протоонкогенов. Эти повреждения являются наиболее важным фактором, определяющим трансформацию соматической клетки в опухолевую. К инициации опухоли может привести и повреждение антионкогена (гена-онкосупрессора).

2. Промоция опухоли это преимущественное размножение измененных клеток. Такой процесс может длиться годами.

. Прогрессия опухоли - это процессы размножения малигнизированных клеток, инвазии и метастазирования, ведущие к появлению злокачественной опухоли.

Дифференциро́вка (онтогенетическая дифференциация) - превращение в процессе индивидуального развития организма (онтогенеза) первоначально одинаковых, неспециализированных клеток зародыша в специализированные клетки тканей и органов. Дифференцировка происходит в основном в процессе зародышевого развития. Развивающийся зародыш дифференцируется сначала на зародышевые листки, затем на зачатки основных систем и органов, далее - на большое число специализированных тканей и органов, характерных для взрослого организма. Дифференцировка происходит также в органах взрослого организма, например, из клеток костного мозга дифференцируются различные клетки крови. Часто дифференцировкой называют ряд последовательных изменений, претерпеваемых клетками одного типа в процессе их специализации. Например, в ходе дифференцировки красных клеток крови эритробласты преобразуются в ретикулоциты, а те - в эритроциты. Дифференцировка выражается в изменении как формы клеток, их внутреннего и внешнего строения и взаимосвязей (например, миобласты вытягиваются, сливаются друг с другом, в них образуются миофибриллы; у нейробластов увеличивается ядро, появляются отростки, соединяющие нервные клетки с различными органами и между собой), так и их функциональных свойств (мышечные волокна приобретают способность сокращаться, нервные клетки - передавать нервные импульсы, железистые - секретировать соответствующие вещества).

Главные факторы дифференцировки - различия цитоплазмы ранних эмбриональных клеток. На ход дифференцировки оказывают влияние гормоны. Дифференцировка может происходить только в клетках, к ней подготовленных. Действие фактора дифференцировки вызывает сначала состояние латентной (скрытой) дифференцировки, или детерминации, когда внешние признаки дифференцировки не проявляются, но дальнейшее развитие ткани может происходить независимо от побудительного фактора. Например, дифференцировка нервной ткани вызывается зачатком хордомезодермы. Обычно состояние дифференцировки необратимо, дифференцированные клетки не могут утратить своей специализации. Однако в условиях повреждения ткани, способной к регенерации, а также при злокачественном перерождении происходит частичная дедифференцировка, когда клетки утрачивают признаки, приобретенные в процессе дифференцировки, и внешне напоминают малодифференцированные клетки зародыша. Возможны случаи приобретения дедифференцированными клетками дифференцировки в ином направлении (метаплазия).
Молекулярно-генетической основой дифференцировки является активность специфических для каждой ткани генов . В каждой клетке, в том числе и дифференцированной, сохраняется весь генетический аппарат (все гены). Однако активна в каждой ткани лишь часть генов, ответственных за данную дифференцировку. Роль факторов дифференцировки сводится к избирательной активации генов. Активность определенных генов приводит к синтезу соответствующих белков, определяющих дифференцировку.

Гаструляция и последующие стадии развития организмов сопровождаются процессами роста и дифференцировки клеток.

Рост - это увеличение общей массы и размеров организма в процессе развития. Он происходит на клеточном, тканевом, органном и организменном уровнях. Увеличение массы в целом организме отражает рост составляющих его структур.

Рост обеспечивается следующими механизмами:

Увеличением числа клеток;

Увеличением размера клеток;

Увеличением объема и массы неклеточного вещества.

Различают два типа роста: ограниченный и неограниченный. Неограниченный рост продолжается на протяжении всего онтогенеза (на протяжении жизни особи, до и после рождения), вплоть до смерти. Таким ростом обладают, например, рыбы. Многие позвоночные характеризуются ограниченным ростом, т.е. достаточно быстро выходят на плато своей биомассы.

Выделяют несколько типов роста клеток.

Ауксентичный - рост, идущий путем увеличения размеров клеток. Это редкий тип роста, наблюдающийся у животных с постоянным количеством клеток, таких, как коловратки, круглые черви, личинки насекомых. Рост отдельных клеток нередко связан с полиплоидизацией ядер.

Пролиферационный - рост, протекающий путем размножения клеток. Он известен в двух формах: мультипликативный и аккреционный.

Мультипликативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной клетки, снова вступают в деление. Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается (например, в эмбриональном периоде).

Аккреционный рост заключается в том, что после каждого последующего деления лишь одна из клеток снова делится, тогда как другая прекращает деление. Этот тип роста связан с разделением органа на камбиальную и дифференцированную зоны. Клетки переходят из первой зоны во вторую, сохраняя постоянные соотношения между размерами зон. Такой рост характерен для органов, где происходит обновление клеточного состава.

Пространственная организация роста сложна и закономерна. Именно с ней в значительной мере связана видовая специфичность формы. Это проявляется в виде аллометрического роста. Его биологический смысл состоит в том, что организму в ходе роста надо сохранить не геометрическое, а физическое подобие, т.е. не превышать определенных отношений между массой тела и размерами опорных и двигательных органов. Так как с ростом тела масса возрастает в третьей степени, а сечения костей во второй степени, то для того, чтобы организм не был раздавлен собственной тяжестью, кости должны расти в толщину непропорционально быстро.

Существует предел или лимит Хейфлика (англ. Hayflick limit) - граница количества делений соматических клеток, названа в честь её открывателя Леонарда Хейфлика. В 1961 году Хейфлик наблюдал, как клетки человека, делящиеся в клеточной культуре, умирают приблизительно после 50 делений и проявляют признаки старения при приближении к этой границе. Эта граница была найдена в культурах всех полностью дифференцированных клеток как человека, так и других многоклеточных организмов. Максимальное число делений различно в зависимости от типа клеток и ещё сильнее различается в зависимости от организма. Для большинства человеческих клеток предел Хейфлика составляет 52 деления.

Граница Хейфлика связана с сокращением размера теломер - участков ДНК на концах хромосом. Если клетка не имеет активной теломеразы, как у большинства соматических клеток, при каждом делении клетки размер теломер сокращается, т.к. ДНК-полимераза не способна реплицировать концы молекулы ДНК. Вследствие данного явления теломеры должны укорачиваться весьма медленно - по несколько (3-6) нуклеотидов за клеточный цикл, то есть за количество делений, соответствующее лимиту Хейфлика, они укоротятся всего на 150-300 нуклеотидов. В настоящее время предложена эпигенетическая теория старения, которая объясняет эрозию теломер прежде всего активностью клеточных рекомбиназ, активизирующихся в ответ на повреждения ДНК, вызванные, главным образом, возрастной дерепрессией мобильных элементов генома. Когда после определённого числа делений теломеры исчезают совсем, клетка замирает в определённой стадии клеточного цикла или запускает программу апоптоза - открытого во второй половине 20 века явления плавного разрушения клетки, проявляющегося в уменьшении размера клетки и минимизации количества вещества, попадающего в межклеточное пространство после её разрушения.

Важнейшей характеристикой роста является его дифференциальность . Это означает, что скорость роста неодинакова, во-первых, в различных участках организма и, во-вторых, на разных стадиях развития. Очевидно, что дифференциальный рост оказывает огром­ное влияние на морфогенез. Рост зародыша на разных стадиях сопровождается дифференцировкой клеток. Дифференцировка - это изменения в структуре клеток, связанные со специализацией их функций, и обусловленные активностью определенных генов. Дифференцировка клеток приводит к возникновению как морфологических, так и функциональных различий, обусловленных их специализацией. В процессе дифференцировки менее специализированная клетка становится более специализированной. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.

Различают 4 этапа дифференцировки.

1. Оотипическая дифференцировка на стадии зиготы представлена предположительными, презумптивными зачатками - участками оплодотворенной яйцеклетки.

2. Бластомерная дифференцировка на стадии бластулы заключается в появлении неодинаковых бластомеров (например, бластомеры крыши, дна краевых зон у некоторых животных).

3. Зачатковая дифференцировка на стадии ранней гаструлы. Возникают обособленные участки - зародышевые листки.

4. Гистогенетическая дифференцировка на стадии поздней гаструлы. В пределах одного листка появляются зачатки различных тканей (например, в сомитах мезодермы). Из тканей формируются зачатки органов и систем. В процессе гаструляции, дифференцировки зародышевых листков появляется осевой комплекс зачатков органов.

Возникновение новых структур и изме­нение их формы в ходе индивидуального развития организмов называется морфогенезом. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состо­яние и по большей части необратимым. Главным свойством ацикли­ческих процессов является их пространственно-временная организа­ция. Морфогенез на надклеточном уровне начинается с гаструляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологичес­кие перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого из них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве проте­кает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы.

Современная биология на базе представлений эмбриологии, молекулярной биологии и генетики считает, что индивидуальное развитие от одной клетки до многоклеточного зрелого организма - результат последовательного, избирательного включения работы разных генных участков хромосом в различных клетках. Это приводит к появлению клеток со специфическими для них структурами и особыми функциями, т.е. к процессу, называемому дифференцировкой.

Дифференциация (от лат. дифференция - различие) - 1) развитие у организмов в процессе эволюции разнокачественных структур, выполняющих различные функции, в частности, специализированных органов (например, клешней из ног раков); 2) процесс образования в раннем онтогенезе специализированных тканей и систем органов. В общем, механизм дифференцировки осуществляется путем синтеза на генах информационных РНК, необходимых для воспроизведения белковых молекул и таким образом реализации генетической программы.

Как прокариотические, так и более сложные эукариотические клетки построены по единому плану из однотипных «деталей» (мембраны, набор органоидов, микронити и микротрубочки). Тем не менее, у разных организмов эти «детали» могут иметь различный молекулярный состав. Разнообразие клеток в многоклеточном организме достигается за счет специфического «выключения» одной группы генов и активации другой. Обратимость этого «переключения» позволяет клетке в экстренной ситуации сменить свою специализацию (дифференцировку) в соответствии с нуждами многоклеточного организма.

Роль отдельных клеток в многоклеточном организме подвергалась неоднократному обсуждению и критике и претерпела наибольшие изменения. Т. Шванн представлял себе многогранную деятельность организма как сумму жизнедеятельности отдельных клеток. Это представление было в свое время принято и расширено Р. Вирховым и получило название теории «клеточного государства». Вирхов писал: "…всякое тело, сколько-нибудь значительного объема, представляет устройство, подобное общественному, где множество отдельных существований поставлено в зависимость друг от друга, но так, однако же, что каждое из них имеет свою собственную деятельность, и если побуждение к этой деятельности оно и получает от других частей, зато самою работу свою оно совершает собственными силами» (Р. Вирхов, 1859).

Многоклеточные организмы представляют собой сложные ансамбли клеток, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом. Специализация частей многоклеточного единого организма, расчлененность его функций дают ему большие возможности приспособления для размножения отдельных индивидуумов, для сохранения вида.

Клетка в многоклеточном организме - это единица функционирования и развития. Кроме того, первоосновой всех нормальных и патологических реакций целостного организма является клетка. Действительно, все многочисленные свойства и функции организма выполняются клетками. Когда в организм попадают чужеродные белки, например, бактериальные, то развивается иммунологическая реакция. При этом в крови появляются белки-антитела, которые связываются с чужими белками и их инактивируют. Эти антитела - продукты синтетической активности определенных клеток, плазмацитов. Но, чтобы плазмациты начали вырабатывать специфические антитела, необходима работа и взаимодействие целого ряда специализированных клеток-лимфоцитов и макрофагов. Другой пример: простейший рефлекс - слюноотделение в ответ на предъявление пищи. Здесь проявляется очень сложная цепь клеточных функций: зрительные анализаторы (клетки) передают сигнал в кору головного мозга, где активируется целый ряд клеток, передающих сигналы на нейроны, которые посылают сигналы к разным клеткам слюнной железы, где одни вырабатывают белковый секрет, другие выделяют слизистый секрет, третьи, мышечные, сокращаясь, выдавливают секрет в протоки, а затем в полость рта. Такие цепи последовательных функциональных актов отдельных групп клеток можно проследить на множестве примеров функциональных отправлений организма.

Жизнь нового организма начинается с зиготы - клетки, получившейся в результате слияния женской половой клетки (ооцита) с мужской половой гаметой (спермием). При делении зиготы возникает клеточное потомство, которое также делится, увеличивается в числе и приобретает новые свойства, специализируется, дифференцируется. Рост организма, увеличение его массы есть результат размножения клеток и результат выработки ими разнообразных продуктов (например, вещества кости или хряща).

И, наконец, именно поражение клеток или изменение их свойств является основой для развития всех без исключения заболеваний. Данное положение было впервые сформулировано Р. Вирховым (1858) в его знаменитой книге «Клеточная патология». Классическим примером клеточной обусловленности развития болезни может служить сахарный диабет, широко распространенное заболевание современности. Его причина - недостаточность функционирования лишь одной группы клеток, так называемых В-клеток островков Лангерганса в поджелудочной железе. Эти клетки вырабатывают гормон инсулин, участвующий в регуляции сахарного обмена организма.

Все эти примеры показывают важность изучения структуры, свойств и функций клеток для самых различных биологических дисциплин и для медицины.

Дифференцировка клеток

Дифференцировка клеток - процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток , отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной экспрессии (то есть согласованной функциональной активности) определённого набора генов.

В процессе дифференцировки менее специализированная клетка становится более специализированной. Например, моноцит развивается в макрофаг , промиобласт развивается в миобласт, который образуя синцитий , формирует мышечное волокно. Деление, дифференцировка и морфогенез - основные процессы, путём которых одиночная клетка (зигота) развивается в многоклеточный организм, содержащий самые разнообразные виды клеток. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.

Дифференцировка клеток происходит не только в эмбриональном развитии, но и во взрослом организме (при кроветворении , сперматогенезе , регенерации поврежденных тканей).

Потентность

Дифференцировка в процессе развития эмбриона

Общее название для всех клеток, ещё не достигших окончательного уровня специализации (то есть способных дифференцироваться), - стволовые клетки. Степень дифференцированости клетки (её «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называются плюрипотентными . Для обозначения плюрипотентных клеток в организме животных используется также термин «эмбриональные стволовые клетки». Зигота и бластомеры являются тотипотентными , так как они могут дифференцироваться в любую клетку, в том числе и в экстраэмбриональные ткани.

Дифференцировка клеток млекопитающих

Самая первая дифференцировка в процессе развития эмбриона происходит на этапе формирования бластоцисты , когда однородные клетки морулы , разделяются на два клеточных типа: внутренний эмбриобласт и внешний трофобласт . Трофобласт участвует в имплантации эмбриона и дает начало эктодерме хориона (одна из тканей плаценты). Эмбриобласт даёт начало всем прочим тканям эмбриона. По мере развития эмбриона клетки становятся всё более специализированными (мультипотентные, унипотентные), пока не станут окончательно дифференцировавшимися клетками, обладающими конечной функцией, как например, мышечные клетки. В организме человека насчитывается порядка 220 различных типов клеток.

Небольшое количество клеток во взрослом организме сохраняют мультипотентность. Они используются в процессе естественного обновления клеток крови, кожи и др., а также для замещения повреждённых тканей. Так как эти клетки обладают двумя основными функциями стволовых клеток - способностью обновляться, поддерживая мультипотентность, и способностью дифференцироваться - их называют взрослыми стволовыми клетками.

Дедифференцировка

Дедифференцировка - это процесс, обратный дифференцировке. Частично или полностью дифференцировавшаяся клетка возвращается в менее дифференцированное состояние. Обычно является частью регенеративного процесса и чаще наблюдается у низших форм животных, а также у растений. Например, при повреждении части растения клетки, соседствующие с раной, дедифференцируются и интенсивно делятся, формируя каллус . При помещении в определённые условия клетки каллуса дифференцируются в недостающие ткани. Так при погружении черенка в воду из каллуса формируются корни. С некоторыми оговорками к явлению дедифференцировки можно отнести опухолевую трансформацию клеток.

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Дифференцировка клеток" в других словарях:

    Д. тканей см. Клеточка, Ткани растений …

    См. Клеточка, Ткани растений … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (лат. differentia различие) возникновение различий между однородными клетками и тканями, их изменение в ходе онтогенеза, приводящее к специализации … Большой медицинский словарь

    Клеток процесс реализации генетически обусловленной программы формирования специализированного фенотипа клеток, отражающего их способность к тем или иным профильным функциям. Иными словами, фенотип клеток есть результат координированной… … Википедия

    дифференцировка - и, ж. différencier, нем. differenzieren. устар. Действие по знач. гл. дифференицировать. Усовершенствования при нашей цивилизации клонятся все более и более к развитию только некоторых наших способностей, к развитию одностороннему, к… … Исторический словарь галлицизмов русского языка

    Возникновение различий между однородными клетками и тканями, изменения их в ходе развития особи, приводяшие к формированию специализир. клеток, органов и тканей. Д. лежит в основе морфогенеза и происходит в осн. в процессе зародышевого развития,… … Биологический энциклопедический словарь

    Процесс превращения стволовых клеток в клетки, дающие начало какой либо одной линии клеток крови. Этот процесс приводит к образованию красных кровяных клеток (эритроцитов), тромбоцитов, нейтрофилов, моноцитов, эозинофилов, базофилов и лимфоцитов … Медицинские термины

    Превращение в процессе индивидуального развития организма (онтогенеза) первоначально одинаковых, неспециализированных клеток зародыша в специализированные клетки тканей и органов … Большой Энциклопедический словарь

    дифференцировка - Специализация до этого однородных клеток и тканей организма Тематики биотехнологии EN differentiation … Справочник технического переводчика

    дифференцировка - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ДИФФЕРЕНЦИРОВКА – процесс формирования специфических свойств у клеток в ходе индивидуального развития и появления различий между однородными клетками и тканями, приводящий к образованию специализированных клеток, тканей и… … Общая эмбриология: Терминологический словарь