Гепатоциты выполняют следующие функции. Гепатоциты это

Гепатоциты - это клетки паренхимы печени, именно от них зависит функционирование органа. Их основное назначение заключается в сохранении полезных компонентов, обезвреживании токсичных веществ.

Печень состоит на 60-85 % из гепатоцитов, их количество достигает 300 миллиардов. Все клетки принимают участие в промежуточных реакциях метаболических процессов. Гепатоцит имеет 6 ровных сторон с 1-2 ядрами.

Структурные компоненты гепатоцитов:

  • Митохондрии - центр концентрации энергии;
  • Ядро и цитоплазма;
  • Эндоплазматическую сеть;
  • Лизосомы, липиды;
  • Гликоген;
  • Комплексы Гольджи.

Основные функции гепатоцитов:

  • Корректировка трансформации углеводов;
  • Участие в производстве и хранении протеинов;
  • Регулировка синтеза холестерина и желчных кислот;
  • Выведение токсичных веществ;
  • Активизация процессов желчеобразования.

Гепатоциты отличаются ограниченным количеством делений в течение жизни, их постоянное разрушение может привести в определенный момент к утрате способности к восстановлению. Спровоцировавшие деструктивные процессы заболевания могут стать хроническими и необратимыми.

Гепатоциты отличаются большими размерами и многокомпонентностью, большинство состоит из митохондрий, гликогена и других видов клеток.

От их разновидности зависит набор характеристик. Поверхность клеток ровная, на ней расположены небольшие участки, на них с разных сторон фиксируются желчные канальцы, кровеносные синусоиды. Фиксация обеспечивается за счет микроворсинок различной длины и диаметра сечения. Большое количество волокон свидетельствует о повышенной активности процессов секреции и поглощения.

Функции клеток:

  • Регулирование содержания глюкозы в крови;
  • Метаболизм жирных кислот;дезактивация медикаментов, химических веществ, алкогольных напитков, стероидных гормонов;
  • Синтез желчи;
  • Синтез обогащенной белками лимфы.

Причины поражения гепатоцитов

Клетки печени подвергаются отрицательному воздействию окружающей среды в ежедневном режиме. К негативным факторам можно отнести плохую экологию, несбалансированный рацион, стрессы, отсутствие физической активности, недосып. Все перечисленные факторы оказывают негативное воздействие на клетки печени и работу органа в целом.

Причины поражения клеток печени:

  • Инфекции и воспаления органа;
  • Вредные привычки (злоупотребление алкоголем, наркотиками, курением);
  • Избыточная масса тела;
  • Вредные продукты в рационе, поздние ужины;
  • Прием препаратов, антибактериальных, противоопухолевых препаратов, НПВС и других;
  • Повышенные физические нагрузки;
  • Старение организма;
  • Плохая наследственность.

Негативные воздействия на гепатоциты провоцируют патологические изменения, некроз клеток приводит к их уничтожению. Патологические процессы сопровождаются нарушениями работы печени и развитию патологий (воспаления, фиброз, дистрофия).

Поражение 80% клеток может привести к печеночной недостаточности и преждевременному летальному исходу.

Синдром цитолиза

Заболевание представляет собой группу патологий, сопровождающихся деструкцией гепатоцитов. Данное явление наблюдается на фоне дистрофических, некротических изменений в паренхиме. Характер болезни связан с причинами развития, в зависимости от степени тяжести патологии процесс разрушения может носить обратимый и необратимый характер.

Цитолиз сопровождается разрушением защитной оболочки клетки, активные ферменты оказывают негативное влияние на печень, в результате развивается дистрофия тканей, некроз. Цитолизные поражения может развиваться в любом возрасте, у младенцев диагностируется аутоиммунная деструкция, у пациентов старше 50 лет наблюдается жировое перерождение.

Клиническая картина отличается в зависимости от стадии заболевания, степени развития повреждений. Заболевание на протяжении долгого времени может никак не проявляться. Быстрое прогрессирование или тотальное разрушение приводит к желтухе, которая поражает кожные покровы, глазные склеры и слизистые оболочки. Изменение цвета свидетельствует об активном выбросе билирубина в кровеносную систему, что свидетельствует о нарушении метаболических процессов.

Цитолиз печени

Глобальное поражение клеток сопровождается также нарушением функционирования системы пищеварения, процесс сопровождается следующими явлениями:

  • Горьковатое послевкусие на голодный желудок или после еды;изжога, отрыжка;
  • Повышение уровня кислотности желудочного сока.

На финальной стадии наблюдаются изменения печени в размерах, процесс сопровождается следующими симптомами:

  • Болевые ощущения в правом подреберье;
  • Уплотнения в зоне проекции пораженной печени (при пальпации).

Как распознать болезнь

Особенность печени заключается в том, что ее поражение не сопровождается дискомфортными ощущениями. Существуют определенные симптомы, по которым можно выявить заболевания.

Признаки болезни:

  1. Ощущение тяжести, дискомфортные ощущения по правым ребром;
  2. Кожные высыпания;
  3. Нарушения сна;
  4. Боль в спине;
  5. Раздражительность;
  6. Разрушение зубов;
  7. Проблемы с сердцем (гипертония, стенокардия);
  8. Снижение веса;
  9. Аллергии;
  10. Беспричинная потеря веса;
  11. Усталость, утомляемость;
  12. Проблемы с аппетитом, беспричинные перепады температуры;
  13. Изменения оттенка кожных покровов на сгибах.

Лечение

Печень - это единственный орган, который обладает свойством регенерации. Данный процесс еще не изучен до конца, иногда для его запуска требуется устранить травмирующие факторы. В результате последних исследований было установлено, возобновление обеспечивается за счет деления клеток. Процесс завершается после полного восстановления печени, после чего гепатоциты снова обретают стабильность.

Регенерация может занять много времени, в молодом возрасте срок обновления клеток более короткий. Основным условием для активизации процесса восстановления клеток печени считается отсутствие травмирующих факторов. Часто этого достаточно полного излечения болезни. На начальных стадиях заболевания все процессы осуществляются медленнее. Чем в более запущенном состоянии находится орган, тем медленнее процесс восстановления.

Ускорить процессы выздоровления поможет избавление от факторов, которые замедляют регенерацию. Пациент должен полностью отказаться от вредных привычек, самолечения, вредного питания, необходимо правильно составлять рацион, соблюдать диету. Дважды в год следует проводить очищение организма, в данном случае подойдет любой рекомендованный врачом способ.

При первых признаках болезни рекомендуется немедленно обратиться за медицинской помощью. Восстановить печень поможет правильный рацион. В состав меню необходимо включить рыбу, морские продукты, яйца, вареные овощи, фрукты, ягоды. Питаться необходимо небольшими порциями несколько раз в день. В рамках лечения используются также медикаменты, действие которых направлено на восстановление органа, активизацию синтеза и оттока желчи, обновление клеток, выведение токсинов.

2018 — 2019, . Все права защищены.

Функции. Печень – самая крупная железа, выполняющая в организме ряд жизненно важных функций, к числу которых относятся: обезвреживание продуктов обмена белков (дезаминирование аминокислот и синтез из аммиака мочевины, а также креатина, креатинина и др.); депонирование и фильтрация крови; инактивация гормонов, биогенных аминов (индол, скатол), лекарственных и ядовитых веществ; превращение моносахаридов в гликоген, депонирование его и обратный процесс; образование белков плазмы крови: фибриногена, альбуминов, протромбина и др.; образование желчи и ее пигментов; метаболизм железа; участие в обмене холестерина; депонирование жирорастворимых витаминов: A, D, E, K; участие в обезвреживании чужеродных частиц, в том числе бактерий, поступающих из кишечника, путем фагоцитоза звездчатыми клетками внутридольковых гемокапилляров; в эмбриональном периоде выполняет кроветворную функцию.

Строение. Печень – паренхиматозный орган. Снаружи она покрыта тонкой соеденительнотканной капсулой и серозной оболочкой. В области ворот печени структурные компоненты капсулы вместе с кровеносными сосудами, нервами и желчным протоком проникают внутрь органа, где создают его строму (интерстиций), делящую печень на доли и дольки. Последние являются структурными и функциональными единицами печени.

В настоящее время сложились различные представления о строении печеночных долек. Различают Классическую печеночную дольку , которая имеет форму шестигранной призмы с плоским основанием и слегка выпуклой верхушкой. В центре классической дольки находится центральная вена, а по её углам находятся тетрады: междольковые артерия, вена, лимфатический сосуд и желчный проток.

По другим представлениям, структурно-функциональными единицами печени являются Портальная печеночная долька И печеночный ацинус , которые отличаются от классических долек по форме и определяющим их ориентирам (рис. 36).

Портальная печеночная долька состоит из сегментов трех соседних классических долек. Она имеет форму равностороннего треугольника, в центре которого находится тетрада, а по его углам – центральные вены.

Печеночный ацинус включает сегменты двух соседних классических долек и выглядит в виде ромба, у острых углов лежат центральные вены, а у тупых – тетрады.

Степень развития междольковой соединительной ткани у разных видов животных неодинакова. Наиболее выражена она у свиней.

В классической дольке печеночные эпителиоциты (гепатоциты) образуют радиально расположенные печеночные балки, между которыми находятся внутридольковые синусоидные гемокапилляры, несущие кровь от периферии долек к их центру.

Рис. 36. Схема строения структурно-функциональных единиц печени. 1 - классическая печеночная долька; 2 - портальная печеночная долька; 3 - печеночный ацинус; 4 – тетрада (триада) ; 5 – центральные вены.

Гепатоциты в составе балок располагаются попарно в два ряда, взаимосвязаны между собой десмосомами и по типу «замка». Каждая пара гепатоцитов в составе балок принимает участие в образовании желчного капилляра, просвет которого заключен между соприкасающимися апикальными полюсами двух соседних гепатоцитов (рис. 37) Таким образом, желчные капилляры располагаются внутри печеночных балок, а их стенка образована впячиваниями цитоплазмы гепатоцитов в виде желоба. При этом поверхности гепатоцитов, обращенные в просвет желчного капилляра, имеют микроворсинки.

Желчные капилляры слепо начинаются на центральном конце печеночной балки, а на периферии долек переходят в короткие трубочки – холангиолы, выстланные кубическими клетками. Эндотелий гемокапилляров на большем протяжении лишен базальной мембраны, кроме периферических и центральных его отделов. Помимо этого, в эндотелии имеются поры, что в совокупности облегчает обмен веществ между содержимым крови и гепатоцитами (см. рис. 37).

В норме желчь не попадает в перисинусоидальное пространство, так как просвет желчного капилляра не сообщается с межклеточной щелью благодаря тому, что образующие их гепатоциты имеют между собой замыкательные пластинки, которые обеспечивают очень плотное соприкосновение мембран печеночных клеток в зоне их контакта. Тем самым они надежно изолируют перисинусоидальные пространства от попадания в них желчи. При патологических состояниях, когда печеночные клетки подвергаются разрушению, (например при вирусном гепатите), желчь попадает в вокругсинусоидальные пространства и далее через поры в эндотелиоцитах в кровь. При этом развивается желтуха.

Перисинусоидальное пространство заполнено жидкостью, богатой белками. В нём находятся аргирофильные волокна, оплетающие в виде сети печеночные балки, цитоплазматические отростки звездчатых макрофагов, тела которых находятся в составе эндотелиального пласта гемокапилляров, а также клетки мезенхимного происхождения – перисинусоидальные липоциты, в цитоплазме которых содержатся мелкие капли жира. Полагают, что эти клетки, подобно фибробластам, участвуют в фибриллогенезе, а, кроме того, депонируют жирорастворимые витамины.

Рис. 37. Схематическое изображение ультрамикроскопического строенияПечени (по Е. Ф.Котовскому). 1 – синусоидный гемокапилляр; 2 – эндотелиоцит; 3 – поры в эндотелиоцитах; 4 – клетка К Упфера (макрофаг); 5 – перисинусоидальное пространство; 6 – ретикулярные волокна; 7 – микроворсинки гепатоцитов; 8 – гепатоциты; 9 – жёлчный капилляр; 10 – липоциты; 11 – липидные включения; 12 – эритроцит.

Со стороны просвета синусоидов к звездчатым макрофагам и эндотелиоцитам с помощью псевдоподий прикрепляются Ямочные клетки ( Pit -клетки), в цитоплазме которых содержатся секреторные гранулы. Рit-клетки относятся к большим гранулярным лимфоцитам, обладающим естественной киллерной активностью и одновременно эндокринной функцией. В связи с этим они могут осуществлять противоположные эффекты, например, при заболеваниях печени они выполняют роль киллеров, которые уничтожают поврежденные гепатоциты, а в период выздоровления, подобно эндокриноцитам (апудоцитам), стимулируют пролиферацию печеночных клеток. Основная часть ямочных клеток сосредоточена в зоне тетрад.

Гепатоциты – самые многочисленные (до 60%) клетки печени. Они имеют многоугольную форму, содержат одно или два ядра. Процент двухядерных клеток зависит от функционального состояния организма. Многие ядра полиплоидные, имеют более крупные размеры. Цитоплазма гепатоцитов гетерофильна, содержит все органеллы, в том числе пероксисомы. ГЭС и АЭС в виде многочисленных микроканальцев, трубочек и пузырьков участвует в синтезе белков крови, метаболизме углеводов, жирных кислот, дезинтоксикации вредных веществ. Митохондрии довольно многочисленны. Комплекс Гольджи обычно расположен у билиарного полюса клетки, где имеют место также лизосомы. В цитоплазме гепатоцитов выявляются включения гликогена, липидов, пигментов. Интересно, что гликоген более интенсивно синтезируется в гепатоцитах, расположенных ближе к центру классических долек, а желчь – в клетках, локализующихся на их периферии, а затем этот процесс распространяется к центру долек.

16.4. ПЕЧЕНЬ

Печень (hepar) - самая крупная железа пищеварительного тракта. Функции печени чрезвычайно разнообразны. В ней обезвреживаются многие продукты обмена веществ, инактивируются гормоны, биогенные амины, а также ряд лекарственных препаратов. Печень участвует в защитных реакциях организма против микробов и чужеродных веществ в случае проникновения их извне. В ней образуется гликоген - главный источник поддержания постоянной концентрации глюкозы в крови. В печени синтезируются важнейшие белки плазмы крови: фибриноген, альбумины, протромбин и др. Здесь метаболизируется железо и образуется желчь, необходимая для всасывания жиров в кишечнике. Большую роль она играет в обмене холестерина, который является важным компонентом клеточных мембран. В печени накапливаются необходимые

Рис. 16.36. Печень человека:

1 - центральная вена; 2 - синусоидальные капилляры; 3 - печеночные балки

для организма жирорастворимые витамины - A, D, Е, К и др. Кроме того, в эмбриональном периоде печень является органом кроветворения. Столь многочисленные и важные функции печени определяют ее значение для организма как жизненно необходимого органа.

Развитие. Зачаток печени образуется из энтодермы в конце 3-й нед эмбриогенеза и имеет вид мешковидного выпячивания вентральной стенки туловищной кишки (печеночная бухта). В процессе роста печеночная бухта подразделяется на верхний (краниальный) и нижний (каудальный) отделы. Краниальный отдел служит источником развития печени и печеночного протока, каудальный - желчного пузыря и желчного протока. Устье печеночной бухты, в которое впадают краниальный и каудальный отделы, образует общий желчный проток. В гистогенезе происходит дивергентная дифференцировка стволовых клеток в составе краниального отдела печеночной бухты, в результате которой возникают диффероны эпителиоцитов печени (гепатоцитов) и эпителиоцитов желчных протоков (холангиоцитов). Эпителиальные клетки краниального отдела печеночной бухты быстро разрастаются в мезенхиме брыжейки, формируя многочисленные тяжи. Между эпителиальными тяжами располагается сеть широких кровеносных капилляров, происходящих из желточной вены, которая в процессе развития дает начало воротной вене.

Сложившаяся таким путем железистая паренхима печени своим строением напоминает губку. Дальнейшая дифференцировка печени происходит во второй половине внутриутробного периода развития и в первые годы после рождения. При этом по ходу ветвей воротной вены внутрь печени врастает соединительная ткань, разделяя ее на печеночные дольки.

Строение. Поверхность печени покрыта соединительнотканной капсулой, которая плотно срастается с висцеральным листком брюшины. Паренхима

Рис. 16.37. Кровеносная система печени (по Е. Ф. Котовскому):

1 - воротная вена и печеночная артерия; 2 - долевая вена и артерия; 3 - сегментарная вена и артерия; 4 - междольковая артерия и вена; 5 - вокругдольковая вена и артерия; 6 - внутридольковые гемокапилляры; 7 - центральная вена; 8 - поддоль-ковая вена; 9 - печеночные вены; 10 - печеночная долька

печени образована печеночными дольками (lobuli hepaticus). Печеночные дольки - структурно-функциональные единицы печени (рис. 16.36).

Существует несколько представлений об их строении. Согласно классическому представлению, печеночные дольки имеют форму шестигранных призм с плоским основанием и слегка выпуклой вершиной. Их ширина не превышает 1,5 мм, тогда как высота, несмотря на значительные колебания, несколько больше. Иногда простые дольки сливаются (по 2 и более) своими основаниями и формируют более крупные сложные печеночные дольки. Количество долек в печени человека достигает 500 тыс. Междольковая соединительная ткань образует строму органа. В ней проходят кровеносные сосуды и желчные протоки, структурно и функционально связанные с печеночными дольками. У человека междольковая соединительная ткань развита слабо, и вследствие этого печеночные дольки плохо отграничены друг от друга. Такое строение характерно для здоровой печени. Наоборот, интенсивное развитие соединительной ткани, сопровождающееся атрофией (уменьшением) печеночных долек, является признаком тяжелого заболевания печени, известного под названием «цирроз».

Кровеносная система. Исходя из классического представления о строении печеночных долек, кровеносную систему печени условно можно разделить на три части: систему притока крови к долькам, систему циркуляции крови внутри них и систему оттока крови от долек (рис. 16.37).

Система притока представлена воротной веной и печеночной артерией. Воротная вена, собирая кровь от всех непарных органов брюшной полости, богатую веществами, всосавшимися в кишечнике, доставляет ее в печень. Печеночная артерия приносит кровь от аорты, насыщенную кислородом. В печени эти сосуды многократно разделяются на всё более мелкие сосуды: долевые, сегментарные, междольковые вены и артерии (vv. иаа. interlobulares), вокругдольковые вены и артерии(vv. иаа. perilobulares). На всем протяжении эти сосуды сопровождаются аналогичными по названию желчными протоками(ductuli biliferi)

Вместе ветви воротной вены, печеночной артерии и желчные протоки составляют так называемые печеночные триады. Рядом с ними лежат лимфатические сосуды.

Междольковые вены и артерии, подразделяющиеся по размеру на 8 порядков, идут вдоль боковых граней печеночных долек. Отходящие от них вокругдольковые вены и артерии опоясывают дольки на разных уровнях.

Междольковые и вокругдольковые вены являются сосудами со слаборазвитой мышечной оболочкой. Однако в местах разветвления в их стенках наблюдаются скопления мышечных элементов, образующих сфинктеры. Соответствующие междольковые и вокругдольковые артерии относятся к сосудам мышечного типа. При этом артерии обычно в несколько раз меньше по диаметру, чем рядом лежащие вены.

От вокругдольковых вен и артерий начинаются кровеносные капилляры. Они входят в печеночные дольки и сливаются, образуя внутридолько-вые синусоидные сосуды, которые составляют систему циркуляции крови в печеночных дольках. По ним течет смешанная кровь в направлении от периферии к центру долек. Соотношение между венозной и артериальной кровью во внутридольковых синусоидных сосудах определяется состоянием сфинктеров междольковых вен. Внутридольковые капилляры относятся к синусоидному (до 30 мкм в диаметре) типу капилляров с прерывистой базальной мембраной. Они идут между тяжами печеночных клеток - печеночными балками, радиально сходясь к центральным венам (vv. centrales), которые лежат в центре печеночных долек.

Центральными венами начинается система оттока крови от долек. По выходе из долек эти вены впадают в поддольковые вены (vv. sublobulares), проходящие в междольковых перегородках. Поддольковые вены не сопровождаются артериями и желчными протоками, т. е. не входят в состав триад. По этому признаку их легко отличить от сосудов системы воротной вены - междольковых и вокругдольковых вен, приносящих кровь к долькам.

Центральные и поддольковые вены - сосуды безмышечного типа. Они сливаются и образуют ветви печеночных вен, которые в количестве 3- 4 выходят из печени и впадают в нижнюю полую вену. Ветви печеночных вен имеют хорошо развитые мышечные сфинктеры. С их помощью регулируется отток крови от долек и всей печени в соответствии с ее химическим составом и массой.

Таким образом, печень снабжается кровью из двух мощных источников - воротной вены и печеночной артерии. Благодаря этому через печень

Рис. 16.38. Ультрамикроскопическое строение печени (по Е. Ф. Котовскому): 1 - внутридольковый синусоидный сосуд; 2 - эндотелиальная клетка; 3 - ситовидные участки; 4 - звездчатые макрофаги; 5 - перисинусоидальное пространство; 6 - ретикулярные волокна; 7 - микроворсинки гепатоцитов; 8 - гепатоциты; 9 - желчный капилляр; 10 - перисинусоидальные жиронакапливающие клетки; 11 - жировые включения в цитоплазме жиронакапливающей клетки; 12 - эритроциты в капилляре

проходит за непродолжительное время вся кровь организма, обогащаясь белками, освобождаясь от продуктов азотистого обмена и других вредных веществ. Паренхима печени имеет огромное число кровеносных капилляров, и вследствие этого кровоток в печеночных дольках осуществляется медленно, что способствует обмену между кровью и клетками печени, выполняющими защитную, обезвреживающую, синтетическую и другие важные для организма функции. При необходимости в сосудах печени может депонироваться большая масса крови.

Классическая печеночная долька (lobulus hepaticus classicus seu poligonalis). Согласно классическому представлению, печеночные дольки образованыпеченочными балками ивнутридольковыми синусоидными кровеносными капиллярами. Печеночные балки, построенные изгепатоцитов - печеночных эпителиоци-тов, расположены в радиальном направлении. Между ними в том же направлении от периферии к центру долек проходят кровеносные капилляры.

Внутридольковые кровеносные капилляры выстланы плоскими эндотелио-цитами. В области соединения эндотелиальных клеток друг с другом имеются мелкие поры. Эти участки эндотелия называются ситовидными (рис. 16.38).

Рис. 16.39. Строение синусоида печени:

1 - звездчатый макрофаг (клетка Купфера); 2 - эндотелиоцит: а - поры (сетевидная зона); 3 - перисинусоидальное пространство (пространство Диссе); 4 - ретикулярные волокна; 5 - жиронакапливающая клетка с каплями липида (б); 6 - ямочная клетка (печеночная НК-клетка, гранулированный лимфоцит); 7 - плотные контакты гепатоцитов; 8 - десмосома гепатоцитов; 9 - желчный капилляр (по Е. Ф. Котовскому)

Между эндотелиоцитами рассеяны многочисленные звездчатые макрофаги (клетки Купфера), не образующие сплошного пласта. В отличие от эндо-телиоцитов они имеют моноцитарное происхождение и являются макрофагами печени (macrophagocytus stellatus), с которыми связаны ее защитные реакции (фагоцитоз эритроцитов, участие в иммунных процессах, разрушение бактерий). Звездчатые макрофаги имеют отростчатую форму и строение, типичное для фагоцитов. К звездчатым макрофагам и эндотелиальным клеткам со стороны просвета синусоидов прикрепляются с помощью псевдоподии ямочные клетки (pit-клетки, печеночные НК-клетки). В их цитоплазме, кроме органелл, присутствуют секреторные гранулы (рис. 16.39). Эти клетки относятся к большим гранулярным лимфоцитам, которые обладают естественной киллерной активностью и одновременно эндокринной

функцией. Благодаря этому печеночные НК-клетки в зависимости от условий могут осуществлять противоположные эффекты: например, при заболеваниях печени они, как киллеры, уничтожают поврежденные гепатоциты, а в период выздоровления, подобно эндокриноцитам (апудоцитам), стимулируют пролиферацию печеночных клеток. Основная часть НК-клеток находится в зонах, окружающих сосуды портального тракта (триады).

Базальная мембрана на большом протяжении у внутридольковых капилляров отсутствует, за исключением их периферических и центральных отделов. Капилляры окружены узким (0,2-1 мкм) перисинусоидальным пространством (Диссе). Через поры в эндотелии капилляров составные части плазмы крови могут попадать в это пространство, а в условиях патологии сюда проникают и форменные элементы. В нем, кроме жидкости, богатой белками, находятся микроворсинки гепатоцитов, иногда отростки звездчатых макрофагов, аргирофильные волокна, оплетающие печеночные балки, а также отростки клеток, известных под названием жиронакапливающие клетки. Эти небольшие (5-10 мкм) клетки располагаются между соседними гепатоцитами. Они постоянно содержат не сливающиеся друг с другом мелкие капли жира, много рибосом и единичные митохондрии. Количество жиронакапливающих клеток может резко возрастать при ряде хронических заболеваний печени. Полагают, что эти клетки, подобно фибробластам, способны к волокнообразованию, а также к депонированию жирорастворимых витаминов. Кроме того, клетки участвуют в регуляции просвета синусоидов и секретируют факторы роста.

Печеночные балки состоят из гепатоцитов, связанных друг с другом дес-мосомами и по типу «замка». Балки анастомозируют между собой, и поэтому их радиальное направление в дольках не всегда четко заметно. В печеночных балках и анастомозах между ними гепатоциты располагаются двумя рядами, тесно прилегающими друг к другу. В связи с этим на поперечном срезе каждая балка представляется состоящей из двух клеток. По аналогии с другими железами печеночные балки можно считать концевыми отделами печени, так как образующие их гепатоциты секретируют глюкозу, белки крови и ряд других веществ.

Между рядами гепатоцитов, составляющих балку, располагаются желчные капилляры, или канальцы, диаметром от 0,5 до 1 мкм. Эти капилляры не имеют собственной стенки, так как образованы соприкасающимися били-арными поверхностями гепатоцитов, на которых имеются небольшие углубления, совпадающие друг с другом и вместе образующие просвет желчного капилляра (рис. 16.40, а, б). Просвет желчного капилляра не сообщается с межклеточной щелью благодаря тому, что мембраны соседних гепатоцитов в этом месте плотно прилегают друг к другу, образуя замыкательные пластинки. Поверхности гепатоцитов, ограничивающие желчные капилляры, имеют микроворсинки, которые вдаются в их просвет.

Полагают, что циркуляция желчи по этим капиллярам (канальцам) регулируется с помощью микрофиламент, располагающихся в цитоплазме гепа-тоцитов вокруг просвета канальцев. При угнетении их сократительной способности в печени может наступить холестаз, т. е. застой желчи в канальцах и протоках. На обычных гистологических препаратах желчные капилляры

Рис. 16.40. Строение долек (а) и балок (б) печени (по Е. Ф. Котовскому):а - схема строения портальной дольки и ацинуса печени: 1 - классическая печеночная долька; 2 - портальная долька; 3 - печеночный ацинус; 4 - триада; 5 - центральные вены;б - схема строения печеночной балки: 1 - печеночная балка (пластинка); 2 - гепатоцит; 3 - кровеносные капилляры; 4 - перисинусоидальное пространство; 5 - жиронакапливающая клетка; 6 - желчный каналец; 7а - вокруг-дольковая вена; 7б - вокругдольковая артерия;7 в - вокругдольковый желчный проток; 8 - центральная вена

остаются незаметными и выявляются только при специальных методах обработки (импрегнация серебром или инъекции капилляров окрашенной массой через желчный проток). На таких препаратах видно, что желчные капилляры слепо начинаются на центральном конце печеночной балки, идут вдоль

нее, слегка изгибаясь и отдавая в стороны короткие слепые выросты. Ближе к периферии дольки формируются желчные проточки (холангиолы, канальцы Геринга), стенка которых представлена как гепатоцитами, так и эпителио-цитами (холангиоцитами). По мере увеличения калибра проточка стенка его становится сплошной, выстланной однослойным эпителием. В его составе располагаются малодифференцированные (камбиальные) холангиоциты. Холангиолы впадают вмеждольковые желчные протоки (ductuli interlobulares).

Таким образом, желчные капилляры располагаются внутри печеночных балок, тогда как между балками проходят кровеносные капилляры. Поэтому каждый гепатоцит в печеночной балке имеет две стороны. Одна сторона - билиарная - обращена к просвету желчного капилляра, куда клетки секретируют желчь (экзокринный тип секреции), другая -васкулярная - направлена к кровеносному внутридольковому капилляру, в который клетки выделяют глюкозу, мочевину, белки и другие вещества (эндокринный тип секреции). Между кровеносными и желчными капиллярами нет непосредственной связи, так как их отделяют друг от друга печеночные и эндотелиальные клетки. Только при заболеваниях (паренхиматозная желтуха и др.), связанных с повреждением и гибелью части печеночных клеток, желчь может поступать в кровеносные капилляры. В этих случаях желчь разносится кровью по всему организму и окрашивает его ткани в желтый цвет (желтуха).

Согласно другой точки зрения о строении печеночных долек, они состоят из широких пластинок (laminae hepaticae), анастомозирующих между собой. Между пластинами располагаютсякровяные лакуны (vas sinusoidem), по которым медленно циркулирует кровь. Стенка лакун образована эндо-телиоцитами и звездчатыми макрофагоцитами. От пластин они отделены перилакунарным пространством.

Существуют представления о гистофункциональных единицах печени, отличных от классических печеночных долек. В качестве таковых рассматриваются так называемые портальные печеночные дольки и печеночные ацинусы. Портальная долька (lobulus portalis) включает сегменты трех соседних классических печеночных долек, окружающих триаду. Поэтому она имеет треугольную форму, в ее центре лежит триада, а на периферии, т. е. по углам, - вены (центральные). В связи с этим в портальной дольке кровоток по кровеносным капиллярам направлен от центра к периферии (см. рис. 16.40, а).Печеночный ацинус (acinus hepaticus) образован сегментами двух рядом расположенных классических долек, благодаря чему имеет форму ромба. У острых его углов проходят вены (центральные), а у тупого угла - триада, от которой внутрь ацинуса идут ее ветви (вокругдольковые). От этих ветвей к венам (центральным) направляются гемокапилляры (см. рис. 16.40,а). Таким образом, в ацинусе, как и в портальной дольке, кровоснабжение осуществляется от его центральных участков к периферическим.

Печеночные клетки, илигепатоциты, составляют 60 % всех клеточных элементов печени. Они выполняют большую часть функций, присущих печени. Гепатоциты имеют неправильную многоугольную форму. Диаметр их достигает 20-25 мкм. Многие из них (до 20 % в печени человека) содержат два ядра и больше. Количество таких клеток зависит от функционального

Рис. 16.41. Гепатоцит. Электронная микрофотография, увеличение 8000 (препарат Е. Ф. Котовского):

1 - ядро; 2 - митохондрии; 3 - гранулярная эндоплазматическая сеть; 4 - лизосо-ма; 5 - гликоген; 6 - граница между гепатоцитами; 7 - желчный капилляр; 8 - десмо-сома; 9 - соединение по типу «замка»; 10 - агранулярная эндоплазматическая сеть

состояния организма: например, беременность, лактация, голодание заметно отражаются на их содержании в печени (рис. 16.41).

Ядра гепатоцитов круглой формы, их диаметр колеблется от 7 до 16 мкм. Это объясняется наличием в печеночных клетках наряду с обычными ядрами (диплоидными) более крупных - полиплоидных. Число этих ядер с возрастом постепенно увеличивается и к старости достигает 80 %.

Цитоплазма печеночных клеток окрашивается не только кислыми, но и основными красителями, так как отличается большим содержанием РНП. В ней присутствуют все виды общих органелл. Гранулярная эндоплазма-тическая сеть имеет вид узких канальцев с прикрепленными рибосомами. В центролобулярных клетках она расположена параллельными рядами, а

в периферических - в разных направлениях. Агранулярная эндоплазматическая сеть в виде трубочек и пузырьков встречается либо в небольших участках цитоплазмы, либо рассеяна по всей цитоплазме. Гранулярный вид сети участвует в синтезе белков крови, а агранулярный - в метаболизме углеводов. Кроме того, эндоплазматическая сеть за счет образующихся в ней ферментов осуществляет дезинтоксикацию вредных веществ (а также инактивацию ряда гормонов и лекарств). Около канальцев гранулярной эндо-плазматической сети располагаются пероксисомы, с которыми связан обмен жирных кислот. Большинство митохондрий имеет округлую или овальную форму и размер 0,8-2 мкм. Реже наблюдаются митохондрии нитчатой формы, длина которых достигает 7 мкм и более. Митохондрии отличаются сравнительно небольшим числом крист и умеренно плотным матриксом. Они равномерно распределены в цитоплазме. Количество их в одной клетке может меняться. Комплекс Гольджи в период интенсивного желчеотделения перемещается в сторону просвета желчного капилляра. Вокруг него встречаются отдельные или небольшими группами лизосомы. На васкулярной и билиарной поверхностях клеток имеются микроворсинки.

Гепатоциты содержат различного рода включения: гликоген, липиды, пигменты и другие, образующиеся из продуктов, приносимых кровью. Количество их меняется в различные фазы деятельности печени. Наиболее легко эти изменения обнаруживаются в связи с процессами пищеварения. Уже через 3-5 ч после приема пищи количество гликогена в гепатоцитах возрастает, достигая максимума через 10-12 ч. Через 24-48 ч после еды гликоген, постепенно превращаясь в глюкозу, исчезает из цитоплазмы клеток. В тех случаях, когда пища богата жирами, в цитоплазме клеток появляются капли жира, причем раньше всего - в клетках, расположенных на периферии печеночных долек. При некоторых заболеваниях накопление жира в клетках может переходить в их патологическое состояние - ожирение. Процессы ожирения гепатоцитов резко проявляются при алкоголизме, травмах мозга, лучевой болезни и др. В печени наблюдается суточный ритм секреторных процессов: днем преобладает выделение желчи, а ночью - синтез гликогена. По-видимому, этот ритм регулируется при участии гипоталамуса и гипофиза. Желчь и гликоген образуются в разных зонах печеночной дольки: желчь обычно вырабатывается в периферической зоне, и только затем этот процесс постепенно распространяется на центральную зону, а отложение гликогена осуществляется в обратном направлении - от центра к периферии дольки. Гепатоциты непрерывно выделяют в кровь глюкозу, мочевину, белки, жиры, а в желчные капилляры - желчь.

Желчевыводящие пути. К ним относятся внутрипеченочные и внепече-ночные желчные протоки. К внутрипеченочным принадлежат междольковые желчные протоки, а к внепеченочным - правый и левый печеночные протоки, общий печеночный, пузырный и общий желчный протоки. Междольковые желчные протоки вместе с разветвлениями воротной вены и печеночной артерии образуют в печени триады. Стенка междольковых протоков состоит из однослойного кубического, а в более крупных протоках - из цилиндрического эпителия, снабженного каемкой, и тонкого слоя рыхлой соединительной ткани. В апикальных отделах эпителиальных клеток протоков нередко встре-

чаются в виде зерен или капель составные части желчи. На этом основании предполагают, что междольковые желчные протоки выполняют секреторную функцию. Печеночные, пузырный и общий желчный протоки имеют примерно одинаковое строение. Это сравнительно тонкие трубки диаметром около 3,5-5 мм, стенка которых образована тремя оболочками.Слизистая оболочка состоит из однослойного высокого призматического эпителия и хорошо развитого слоя соединительной ткани (собственная пластинка). Для эпителия этих протоков характерно наличие в его клетках лизосом и включений желчных пигментов, что свидетельствует о резорбтивной, т. е. всасывательной, функции эпителия протоков. В эпителии нередко встречаются эндокринные и бокаловидные клетки. Количество последних резко увеличивается при заболеваниях желчных путей.Собственная пластинка слизистой оболочки желчных протоков отличается богатством эластических волокон, расположенных продольно и циркулярно. В небольшом количестве в ней имеются слизистые железы.Мышечная оболочка тонкая, состоит из спирально расположенных пучков гладких миоцитов, между которыми много соединительной ткани. Мышечная оболочка хорошо выражена лишь в определенных участках протоков - в стенке пузырного протока при переходе его в желчный пузырь и в стенке общего желчного протока при впадении его в двенадцатиперстную кишку. В этих местах пучки гладких миоцитов располагаются главным образом циркулярно. Они образуют сфинктеры, которые регулируют поступление желчи в кишечник.Адвентициальная оболочка состоит из рыхлой соединительной ткани.

Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др. ; под ред. Ю. И. Афанасьева, Н. А. Юриной. - 6-е изд., перераб. и доп. - М. : ГЭОТАР-Медиа, 2014. - 800 с. : ил.

Благодаря плотной сосудистой сетке гепатоциты обогащают кровоток требуемым количеством гемосидерина и глюкозы. Структуру гепатоцитарных клеток составляют митохондрии, ретикулум, эндоплазмы, гликоген, комплексы Гольджи. При повреждении с сокращением численности создаются опасные для жизни условия. Цитолиз требует активизации процессов регенерации гепатоцитов.

Функции

Синдром цитолиза

  • отрыжкой;
  • изжогой;
  • боли справа в подреберье;

Причины

Лечение и профилактика

  1. рыбу, морепродукты;
  2. каши из круп;
  3. цельнозерновой хлеб;
  4. кисломолочку;
  5. отвары на костях;
  6. вареные яйца;
  7. растительные масла;
  8. сухофрукты, орехи;
  9. куркуму, чеснок;
  1. сок из майского лопуха.

Строение гепатоцитов, основные органеллы, функции и возможности регенерации

Клетки печени составляют 85% ее общей массы и насчитывают до 300 миллиардов. Их функции направлены на обеспечение жизнедеятельности всего организма, они участвуют в большинстве обменных процессов. Их роль настолько велика, что природой заложена высокая способность к регенерации печеночной ткани, которая может восстановиться до исходной массы при утрате 75% от нее.

Строение гепатоцита

Клетка печени имеет неправильную полигональную форму и два вида поверхностей, которые отличаются по выполняемой функции. Синусоидальная сторона обращена в сторону капилляров и покрыта большим количеством микроворсинок. Желчная поверхность почти гладкая, она образует стенку желчного канала.

Гепатоциты имеют относительно крупный размер, количество ядер в них различное. Клетки с одним ядром составляют 70% от общего числа, двуядерные – 25%, с 4 и 8 ядрами – всего 2%. В каждом ядре находится одно или более ядрышек.

В цитоплазме содержится большое количество митохондрий. Возле ядра располагается комплекс Гольджи. Гранулярная эндоплазматическая сеть продолжается в агранулярную. По цитоплазме распределены лизосомы, пероксисомы, частицы гликогена, капельки жиров.

Электронная микроскопия позволяет подробно рассмотреть ультраструктуру печеночной клетки. Большое количество различных образований обеспечивает выполнение печеночных функций.

Связь работы печени и органелл

Печень выполняет экзокринные и эндокринные функции. Она участвует в выработке желчи и выделении ее в кишечник. Эндокринная функция реализуется путем экскреции с кровью глюкозы, ферментов и некоторых гормонов.

Синтез гликогена

Гепатоциты под действием инсулина удаляют из крови излишки глюкозы, поддерживая ее постоянную концентрацию на уровне 3,5-5,5 ммоль/л. Они запасают ее, придав форму зерен гликогена, диффузно расположенных в цитоплазме. Если отключить эту функцию, после поедания углеводистой пищи сахар крови будет расти бесконтрольно (как у диабетиков).

Гепатоциты работают и в обратном порядке – при падении концентрации глюкозы, они добывают ее из запасов гликогена. Он собран в специальные розетки, тесно соединенные с трубчатой системой эндоплазматического ретикулума. Такое расположение объясняется содержанием в ЭПР фермента глюкозо-6-фосфотазы, который участвует в метаболизме гликогена.

Гормон надпочечника гидрокортизон стимулирует синтез гликогена, но это происходит не из глюкозы, а из белков и аминокислот. Эти реакции вызывают повышение уровня глюкозы крови.

Секреция липопротеидов

Гепатоциты регулируют уровень жиров крови. Часть из них в виде жирных кислот связана с альбумином, а другая образует мелкие липидные капли, связанные с протеинами. Соединение носит название липопротеида. Такие частицы приобретают свойства, позволяющие им быть в растворенном состоянии.

Секреция белков

Клетки печени синтезируют альбумины, фибриноген, глобулины и белки свертывающей системы крови. Они выделяются в синусоиды. Синтез иммуноглобулинов гепатоцитам не принадлежит. Эти белки производятся плазматическими клетками.

Цистернами гранулярного эндоплазматического ретикулума синтезируются протеины крови. Посредством аппарата Гольджи они поступают в ту часть клетки, которая контактирует с кровью и выделяются с помощью экзоцитоза.

Микросомальное окисление

Детоксикационная функция печени обеспечивается ферментами микросомального окисления. На эндоплазматическом ретикулуме образуются пузырьки – микросомы. Их роль заключается в придании гидрофобным веществам гидрофильности путем окисления. Для реализации этого используется цитохром Р450. Он участвует в трансформации чужеродных веществ и эндогенных (гормоны, жирные кислоты).

Некоторые вещества способны ускорить протекание реакций окисления. Они называются индукторами. В таком случае лекарственные препараты метаболизируются быстрее и не окажут нужного эффекта.

Повреждение клеток печени

Обмен некоторых веществ приводит к образованию еще более токсичных соединений, которые способны повредить клетки. Размножение вирусов и выход их наружу также сопровождается клеточными поломками, или цитолизом. Он сопровождается разрушением или повреждением клеточной стенки, внутриклеточных органелл. Причиной распада может стать неалкогольный жировой гепатоз, аутоиммунные болезни.

Отражение синдрома цитолиза можно найти при изучении биохимического анализа крови. Повышаются специфические внутриклеточные ферменты: АЛТ, АСТ, ЛДГ (особенно изоферменты ЛДГ4 и ЛДГ5), сорбитдегидрогеназы, ферритина, прямого билирубина.

Клинически это будет выражаться появлением желтухи и кожного зуда, потемнении мочи, обесцвечивании кала. Таких больных беспокоит:

  • плохое самочувствие;
  • быстрая утомляемость;
  • горечь вы рту;
  • отрыжка;
  • боль в области печени.

Особенности гепатоцитов

Генетическая информация в виде цепочек ДНК, организованных в форме хромосом, хранится в ядре клетки. Для каждого биологического вида характерно свое количество хромосом. У человека в соматической клетке их 46, а в половых по 23. Поэтому обозначается кариотип 23n, где буква – это количество повторов. Клетки печени имеют различное количество ядер. Поэтому количество хромосом изменяется пропорционально и может быть 23n*2, 23n*4, но при этом кариотип считается нормальный 23n.

Клетки Ито

В печеночных дольках содержится особый тип звездчатых клеток, которые могут находиться в двух состояниях. Если повреждений органа нет, они находятся в спокойном состоянии. Их функция состоит в запасании витамина А в виде жировых капель.

После повреждения печени клетки Ито активируются – теряют запасы ретиноида, сжимаются, пролиферируют и образуют клетки, похожие на миофибробласты. Активация говорит о начале фиброгенеза, - формировании рубцовой ткани. После этого этапа происходит апоптоз клеток, вследствие чего их количество сокращается.

Регенерация печени

Этот орган обладает высокой способностью к восстановлению. При утрате 75% тканей, она способна восстановиться полностью за несколько дней. Но за счет чего происходит восполнение недостающей части, до конца не исследовано.

Долгое время считалось, что в печени отсутствуют стволовые клетки, и регенерация происходит на внутриклеточном уровне. Полиплоидные клетки делятся и становятся диплоидными. Также в деление вступают гепатоциты, находящиеся в фазе G0 митоза. Большей частью в восстановлении органа участвуют перипортальные гепатоциты.

Последние исследования показали, что в зоне вокруг центральной вены имеются стволовые клетки с диплоидным набором хромосом, активно делящиеся. Часть из них остается на своих местах, а другие перемещаются к местам повреждения. Под действием специальных факторов, клетка приобретают свойства гепатоцитов. Предположительно, что эти клетки становятся причиной карциномы печени, когда утрачивают контроль над делением.

Регенерация протекает за счет фетальных гепатобластов, овальных клеток, поджелудочной железы, стволовых.

Не полностью понятен механизм прекращения деления клеток – почему на определенном этапе, когда достигнута первоначальная масса органа, оно прекращается. Некоторая роль принадлежит белковым соединениям – трансфотмирующему фактору роста.

Регенерация происходит постоянно, при незначительных кратковременных воздействиях повреждающих факторов на месте погибших клеток обнаруживается печеночная ткань с правильно организованной структурой. Но при длительном и регулярном воздействии патогенного фактора, клетки размножаются со значительным образованием соединительной ткани. Расположение клеток нарушается, ткань теряет правильную архитектонику. Это проявляется в виде узлов регенерации, которые являются признаком цирроза печени.

Возрастные изменения

Структура печеночных долек окончательно формируется только к 8-10 годам. На протяжении жизни происходит постоянное обновление клеток печени. Но активность митоза резко снижается в старческом возрасте. Клетки компенсаторно гипертрофируются, увеличивается число с несколькими ядрами. Цитоплазма накапливает пигмент липофусцин, жировые капли. Количество гликогена постоянно снижается. Окислительно-восстановительные ферменты уменьшают свою активность.

В печеночных дольках уменьшается количество гемокапилляров. Ткань страдает от гипоксии, клетки гибнут и замещаются соединительной тканью. Наиболее активно процесс протекает в центральной части долек.

ГЕПАТОЦИТЫ

Строение и функции гепатоцитов - Системы организма (гистология)

МИКРОСКОПИЧЕСКОЕ СТРОЕНИЕ ГЕПАТОЦИТОВ

В гепатоцитах выявляются многие общие закономерности, представляющие интерес для тех, кто изучает биологию клетки, и в качестве таких иллюстративных примеров гепатоциты рассматривались в предыдущих главах этого руководства, поэтому нет необходимости повторять все то, о чем уже говорилось. Однако для удобства мы все же приведем здесь основные, наиболее интересные данные.

Гепатоциты, накапливающие гликоген (окрашенные на гликоген и другими методами), были показаны на рис., а гепатоциты, содержащие избыточное количество жира, на рис.. На рис.ипредставлены полиплоидные гепатоциты.

Ультраструктура. Ядро гепатоцита показано на рис. 4 - 3; ядерную оболочку и поры в ней можно более детально рассмотреть на рис. 4 - 4.

Цитоплазма гепатоцитов в буквальном смысле слова изобилует различными видами органелл и включений. Особенно многочисленны митохондрии (рис.и); по подсчетам, каждый гепатоцит содержит 1000 или больше митохондрий. Митохондрии имеют особо важное значение для гепатоцитов, поскольку эти клетки выполняют столь многочисленные и разнообразные по характеру метаболические функции. В гепатоцитах встречается множество свободных и связанных с мембранами полирибосом. Хорошо развит как гранулярный, так и гладкий эндоплазматический ретикулум; значение этого факта станет очевидным, когда мы опишем эндокринные функции гепатоцита. По цитоплазме рассеяны многочисленные стопки аппарата Гольджи, вероятно связанные канальцами (как объяснялось в гл. 5). Как видно на рис., некоторые стопки лежат близко к ядру, другие вблизи желчных капилляров. Мешочки аппарата Гольджи также связаны с эндокринной функцией гепатоцитов (см. ниже). Имеются лизосомы всех видов, особенно около желчных капилляров (рис.). Некоторые лизосомы содержат липофусцин пигмент изнашивания, так как липофусцин в гепатоцитах захватывают именно лизосомы (такие лизосомы называют липофусциновыми тельцами). Гепатоциты содержат также значительное число везикулярных органелл, называемых микротельцами (отмечены на рис.). У большинства видов (но не у человека) в их центре находится плотное образование, очевидно, кристаллической природы. Микротельца окружены мембраной и содержат несколько ферментов.

Клетки в этой области связаны контактами. Ближе всего к просвету - плотный контакт-zonula occludens (1). На некотором расстоянии располагаются десмосомы (2). В гепатоците, лежащем вверху справа, можно видеть отдельные цистерны гранулярного эндоплазматического ретикулума (3). Отметьте также лизосому (4), два микротельца (5) с характерной кристаллической внутренней структурой и митохондрии (б). Имеются и отдельные цистерны гладкого эндоплазматического ретикулума (7).

Вверху слева виден желчный капилляр (1), в просвет которого выступают микроворсинки (2). Многочисленные крупные митохондрии (3) характеризуются большим числом крист. В мешочках аппарата Гольджи (4), которые видны ниже центра, отметьте электроноплотные частицы липопротеида, которые являются предшественниками липопротеидов, выделяемых в плазму. Транулы гликогена (5), располагающиеся розетками (а-частицы), видны внизу слева, а между ними - трубочки гладкого эндоплазматического ретикулума.

Кристаллическая структура, которая находится в центре микротелец у многих видов, это уриказа. Этот фермент участвует в превращении мочевой кислоты в ее производные с целью выведения этого вещества из организма. У человека, однако, этот фермент отсутствует, и мочевая кислота выводится с мочой как таковая. При нарушении выведения всей образующейся в организме мочевой кислоты, а также мочевой кислоты, потребляемой с пищей, возникает заболевание называемое подагрой. Недавно было показано, что микротельца содержат ферменты, которые играют важную роль в метаболизме жирных кислот путем (3 - окисления, причем установлено, что под влиянием лекарственных препаратов, применяемых для снижения уровня липидов в сыворотке, число таких микротелец в гепатоцитах увеличивается.

После этого общего обзора органелл гепатоцитов мы далее попытаемся более конкретно связать наличие некоторых из них с функцией гепатоцитов. Но сначала мы должны упомянуть о различных видах поверхностей гепатоцитов.

Три вида поверхностей гепатоцитов

  1. Поверхность, граничащая с пространством Диссе, характеризуется многочисленными микроворсинками, выступающими в это пространство (рис.), что, естественно, обеспечивает для каждого гепатоцита огромную площадь поверхности для всасывания веществ из кровотока. Между микроворсинками имеется пространство, через которое гепатоциты секретируют вещества в плазму крови.
  2. На боковых поверхностях гепатоцитов у большинства видов находятся латеральные выросты и вдавления, соответствующие вдавлениям и выростам соседних гепатоцитов; у человека они развиты незначительно. Благодаря этим образованиям гепатоциты прикрепляются друг к другу.
  3. В каком-то участке поверхности гепатоцита располагается желчный капилляр, лежащий между данным гепатоцитом и одним или двумя другими (рис.и). Поверхность, ограничивающая желчный капилляр, является секреторной. Желчные капилляры будут описаны позднее в связи с экзокринной функцией печени.

Не вдаваясь подробно в функции печени, мы кратко остановимся на некоторых из них и свяжем их с теми органеллами, которыми они обеспечиваются. Мы начнем с эндокринных функций печени.

НЕКОТОРЫЕ ЭНДОКРИННЫЕ ФУНКЦИИ ГЕПАТОЦИТОВ И СВЯЗАННЫЕ С НИМИ ОРГАНЕЛЛЫ

Как уже отмечалось ранее, печень представляет собой экзокринную железу, так как гепатоциты секретируют желчь в желчные капилляры, откуда она отводится по системе протоков в кишку. Но уже несколько десятилетий назад пришли к выводу о том, что она является эндокринной железой. В те времена железу считали эндокринной, если она выделяла в кровоток какое-то необходимое организму вещество. Поэтому, когда было установлено, что печень выделяет сахар в кровоток, было решено, что она является не только экзокринной, но и эндокринной железой. В настоящее время известно, что печень выделяет в кровоток несколько необходимых организму веществ. Следует отметить, что как экзокринная, так и эндокринная функции обеспечиваются одними и теми же специализированными секреторными клетками - гепатоцитами. Необходимо также упомянуть, что, хотя в данной главе удобно рассматривать печень в качестве эндокринной железы, этот термин в настоящее время обычно используется в более узком смысле применительно к тем железам, которые вырабатывают гормоны.

Синтез гликогена и секреция глюкозы

После приема пищи, содержащей значительное количество углеводов, уровень глюкозы в крови повышался бы бесконтрольно, если бы не деятельность гепатоцитов, которые в присутствии инсулина удаляют избыток глюкозы из крови, запасая его в качестве гликогена. И наоборот, когда уровень сахара в крови начинает снижаться, гепатоциты превращают гликоген вновь в глюкозу, выделяя ее в кровь. На электронных микрофотографиях отложения гликогена, образующиеся из глюкозы, имеют вид частиц высокой электронной плотности, которые несколько плотнее рибосом; частицы эти располагаются в виде розеток (см. рис.). Они тесно связаны с трубочками гладкого эндоплазматического ретикулума (см. рис.и). Эта характерная связь между отложениями гликогена и трубочками гладкого эндоплазматического ретикулума, вероятно, обусловлена ферментом глюкозо-6 - фосфатазой, который играет важную роль в обмене гликогена и локализуется в гладком эндоплазматическом ретикулуме.

Образование гликогена в гепатоцитах стимулируется также гормоном гидрокортизоном, который вырабатывает кора надпочечника; однако в этом случае гликоген образуется из белков или их предшественников, причем такое образование гликогена приводит к выделению глюкозы в кровь, а не к поглощению ее из крови.

Гепатоциты синтезируют альбумины, фибриноген и большую часть глобулинов плазмы крови, а также другие белки, участвующие в свертывании крови, и секретируют эти вещества в синусоиды. Иммуноглобулинов гепатоциты не продуцируют; эти белки вырабатываются плазматическими клетками.

Белки, секретируемые гепатоцитами в кровь, синтезируются в цистернах гранулярного эндоплазматического ретикулума, которые видны в различных участках цитоплазмы (как показано справа от центра на рис.). После завершения синтеза белки крови через аппарат Гольджи поступают к свободной поверхности клетки, омываемой плазмой, и выделяются механизмом экзоцитоза.

Секреция липопротеидов

Гепатоциты участвуют также и в регуляции уровня липидов в крови. Хотя некоторые липиды находятся в крови в форме непрочного комплекса жирных кислот с альбумином, большая часть их имеет вид мелких частиц, в которых липиды каким-то образом связаны с белками. Эти частицы называют липопротеидами крови. Частицы липидов сами по себе были бы гидрофобными и поэтому не могли бы оставаться в плазме в виде суспензии. Но белок, с которым они связаны, обладает таким действием, что частицы становятся достаточно гидрофильными для того, чтобы сохраняться в плазме в виде суспензии.

Секреция белков крови

В крови имеются 4 вида липопротеидных частиц. 1) Хиломикроны, которые были описаны самые крупные из таких частиц; они, как уже отмечалось, образуются во всасывающих клетках кишечника. Гепатоциты вместе с другими клетками организма участвуют в удалении этих частиц из крови после приема жирной пищи. Так как хиломикроны взвешены в плазме крови, они легко попадают в пространство Диссе и, вероятно, частицы пре-Р-липопротеидов несколько меньше по размерам, чем хиломикроны, и сравнительно богаче белком. Предполагается, что их образуют гепатоциты. Частицы Р-липопротеидов еще меньше и плотнее и содержат еще меньше липидов. Они тоже синтезируются гепатоцитами и являются основным посредником в процессе транспорта холестерина в организме. Они, вероятно, секретируются наряду с пре- Р-липопротеидами или как их часть. Самые мелкие из всех липопротеидных частиц, это а-липопротеиды с липидами в основном в форме фосфолипидов, главного компонента клеточных мембран.

Липопротеиды, вырабатываемые гепатоцитами, очевидно, синтезируются последовательно, шаг за шагом. Их белковая часть синтезируется в гранулярном эндоплазматическом ретикулуме, который постепенно переходит в гладкий эндоплазматический ретикулум. Последний участвует в синтезе липидов. Поэтому белки и липиды липопротеидных частиц образуются как бы в одной трубочке, белки в том участке, где она имеет гранулярное строение, а липиды там, где она гладкая. Комплекс Гольджи, конечно же, также участвует в этом процессе, причем пузырьки, содержащие липопротеиды, отшнуровываются от его мешочков (рис.), двигаясь к поверхности синусоидов, где содержащиеся в пузырьках липопротеидные частицы выделяются в кровь. Внутри цитоплазмы частицы, окруженные мембраной, имеют вид темных гранул.

РОЛЬ ГЕПАТОЦИТОВ В МЕТАБОЛИЗМЕ И ДЕТОКСИКАЦИИ В СВЯЗИ С УЧАСТИЕМ В ЭТИХ ПРОЦЕССАХ ОРГАНЕЛЛ

Другие функции гепатоцитов (помимо только что описанной эндокринной

функции и рассматриваемой далее экзокринной) будут здесь лишь коротко упомянуты; к ним относятся различные превращения и связывание одних соединений с другими, что приводит к уменьшению токсичности опасных веществ, всосавшихся из кишки или образовавшихся в организме и оказывающих то или иное повреждающее действие на ткани. Например, аммиак, образующийся в процессе метаболизма аминокислот, по достижении определенных концентраций становится токсичным. Гепатоциты предотвращают увеличение его концентраций, используя аммиак для образования либо полезных для организма веществ, либо мочевины, последняя нетоксична (если только ее концентрация не достигает слишком высоких значений) и удаляется из организма почками.

Многие вещества, начиная с лекарств, выписываемых врачом, и кончая химическими веществами, поглощаемыми из различных источников, подвергаются метаболическим превращениям и детоксикации гепатоцитами. В некоторых условиях продукты распада этих веществ могут быть более вредными, нежели сами эти вещества.

Гепатоциты подвергают также метаболическим превращениям стероидные гормоны и алкоголь. При усилении детоксицирующей функции гепатоцитов в них повышается содержание компонентов гладкого эндоплазматического ретикулума.

Строение гепатоцита

Регенерация печени

Гепатоциты это

Печень - паренхиматозный дольчатый орган. Ее строма представлена:

Внутри дольки строма представлена ретикулярными волокнами, лежащими между гемокапиллярами и печеночными балками. В норме у человека междольковая рыхлая волокнистая неоформленная соединительная ткань выражена слабо, в результате чего дольки определяются неотчетливо. При циррозе происходит утолщение соединительнотканных трабекул.

Непосредственно под капсулой лежит один ряд гепатоцитов, образующий так называемую наружную терминальную пластинку. Этот ряд гепатоцитов в области ворот печени внедряется внутрь органа и сопровождает ветвления сосудов (воротной вены и печеночной артерии).

Внутри органа эти гепатоциты лежат на периферии дольки, непосредственно контактируя с рыхлой волокнистой соединительной тканью в области триад и отделяя гепатоциты, расположенные внутри, от окружающей междольковой соединительной ткани. Эта состоящая из одного ряда гепатоцитов зона называется внутренней терминальной пластинкой. Через эту пластинку, перфорируя ее, проходят кровеносные сосуды. Гепатоциты внутренней терминальной пластинки отличаются от остальных гепатоцитов дольки более выраженной базофилией цитоплазмы и меньшими размерами. Считается, что терминальная пластинка содержит камбиальные клетки для гепатоцитов и эпителиоцитов внутрипеченочных желчных протоков. При хроническом гепатите и циррозе терминальная пластинка может разрушаться, что свидетельствует об активности этих процессов.

Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька - структурно-функциональная единица печени. Она имеет форму шестигранной призмы. Ширина печеночной дольки равна 1-1,5 мм, высотамм. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Основу дольки составляют печеночные балки или трабекулы. Они образованы двумя рядами гепатоцитов, соединенных десмосомами. Между гепатоцитами трабекулы проходит внутридольковый желчный капилляр, который не имеет собственной стенки. Его стенку образуют цитолеммы двух гепатоцитов, которые в этом месте инвагинируют. Печеночные балки радиально сходятся к центру дольки. Между соседними балками находятся синусоидные капилляры. Подобное представление об организации печеночной дольки является несколько упрощенным, поскольку печеночные балки далеко не всегда имеют радиальное направление: их ход может существенно изменяться, балки часто анастомозируют друг с другом. Поэтому на срезах не всегда удается проследить их ход с периферии до центральной вены.

Гепатоциты - основной вид клеток печени, выполняющий ее основные функции. Это крупные клетки полигональной или шестиугольной формы. Имеют одно или несколько ядер, при этом ядра могут быть полиплоидными. Многоядерные и полиплоидные гепатоциты отражают приспособительные изменения печени, поскольку эти клетки способны выполнять гораздо более интенсивно свои функции, чем обычные гепатоциты.

Каждый гепатоцит имеет две стороны:

Васкулярная сторона обращена в сторону синусоидного капилляра. Она покрыта микроворсинками, которые проникают через поры в эндотелиоците в просвет капилляра и прямо контактируют с кровью. От стенки синусоидного капилляра васкулярная сторона гепатоцита отделяется перисинусоидальным пространством Диссе. В этом щелевидном пространстве находятся микроворсинки гепатоцитов, отростки печеночных макрофагов (клеток Купфера), клетки Ито и иногда - Pit-клетки. В пространстве встречаются также единичные аргирофильные волокна, количество которых увеличивается на периферии дольки. Таким образом, в печени отсутствует типичный паренхиматозный барьер (имеется так называемый «прозрачный» барьер), что позволяет веществам, синтезируемым в печени, попадать прямо в кровь. С другой стороны, из крови в печень легко поступают питательные вещества и подлежащие обезвреживанию яды. Васкулярной стороной гепатоцит захватывает также из крови секреторные антитела, которые затем поступают в желчь и оказывают свой защитный эффект.

Билиарная сторона гепатоцита обращена в сторону желчного капилляра. Цитолемма контактирующих гепатоцитов здесь образует инвагинации и микроворсинки. Вблизи образовавшегося таким образом желчного капилляра цитолеммы контактирующих гепатоцитов соединяются при помощи опоясывающих десмосом, плотных и щелевидных контактов. Билиарной стороной гепатоцитов вырабатывается желчь, которая поступает в желчный капилляр и далеев отводящие протоки. Васкулярная сторона выделяет в кровь белки, глюкозу, витамины, липидные комплексы. В норме желчь никогда не поступает в кровь, потому что желчный капилляр отделен от синусоидного капилляра телом гепатоцита.

Строение гепатоцитов. Гистология, функции

Гепатоциты являются клетками многогранной формы с шестью или большим числом поверхностей и диаметром 20-30 мкм. На срезах, окрашенных гематоксилином и эозином, цитоплазма гепатоцита - эозинофильная, главным образом, из-за большого количества митохондрий и некоторого количества элементов аЭПС. Гепатоциты, расположенные на различном расстоянии от портальных пространств, различаются своими структурными, гистохимическими и биохимическими характеристиками.

Поверхность каждого гепатоцита находится в контакте со стенкой синусоидов через пространство Диссе, а также с поверхностью других гепатоцитов. В тех участках, где контактируют два гепатоцита, они ограничивают трубчатое пространство между ними, которое известно как желчный капилляр, или желчный каналец. Желчные капилляры, которые являются начальной частью системы желчных протоков, являются трубочками диаметром 1-2 мкм. Они ограничены только плазматическими мембранами двух гепатоцитов, причем в их просвет обращены немногочисленные микроворсинки.

Клеточные мембраны около этих капилляров прочно связаны плотными соединениями. Щелевые соединения часто встречаются между гепатоцитами и являются участками межклеточных соединений, обеспечивая важный процесс координации физиологической активности этих клеток. Желчные капилляры образуют сложные анастомозирующие сети, которые протягиваются вдоль пластинок печеночной дольки и заканчиваются в области портальных пространств. Таким образом, ток желчи происходит в направлении, противоположном направлению тока крови, т.е. от центра дольки к ее периферии. На периферии дольки желчь попадает в желчные проточки, или каналы Геринга, образованные кубическими клетками.

Проходя на небольшое расстояние, проточки пересекают ряд гепатоцитов, ограничивающих дольку, и переходят в желчные протоки в портальных пространствах. Желчные протоки выстланы кубическим или столбчатым эпителием и имеют отчетливую соединительнотканную оболочку. Они постепенно увеличиваются и сливаются, образуя правый и левый печеночные протоки, которые в дальнейшем выходят из печени.

Поверхность гепатоцита, обращенная в пространство Диссе, покрыта многочисленными микроворсинками, которые выступают в это пространство, но всегда между ними и клетками стенки синусоидов остается зазор. Гепатоцит содержит одно или два круглых ядра с одним или двумя ядрышками. Некоторые ядра являются полиплоидными, т.е. они содержат четное количество гаплоидных наборов хромосом. Полиплоидные ядра характеризуются большими размерами, которые пропорциональны их плоидности. В гепатоците сильно развита ЭПС, как аЭПС, так и гранулярной эндоплазматической сети (грЭПС). ГрЭПС в гепатоците образует агрегаты, рассеянные по цитоплазме - базофильные тельца.

В этих структурах на полирибосомах синтезируется ряд белков (например, альбумин и фибриноген крови). Различные важные процессы происходят в аЭПС, которая диффузно распределена по всей цитоплазме. Эта органелла ответственна за процессы окисления, метилирования и конъюгации, необходимые для инактивации или детоксикации различных веществ до их выведения из организма. аЭПС является лабильной системой, быстро реагирующей на молекулы, попавшие в гепатоцит.

Одним из наиболее важных процессов, происходящих в аЭПС, является конъюгация гидрофобного (водонерастворимого) токсического билирубина глюкуронилтрансферазой с образованием водорастворимого нетоксического глюкуронида билирубина. Этот конъюгат выделяется гепатоцитами в желчь. Если не происходит экскреции билирубина или глюкуронида билирубина, могут развиться различные заболевания, которые характеризуются желтухой - наличием желчных пигментов в крови. Одной из серьезных причин желтухи у новорожденных является нередко встречающееся недоразвитие аЭПС в их гепатоцитах (неонатальная гипербилирубинемия). Современное лечение в таких случаях состоит в воздействии синим светом от обычных флюоресцентных ламп, которое вызывает трансформацию неконъюгированного билирубина в водорастворимый фотоизомер, который может удаляться почками.

Гепатоцит часто содержит гликоген. Этот полисахарид выглядит под электронным микроскопом как крупные электронно-плотные гранулы, которые часто накапливаются в цитозоле вблизи аЭПС. Количество гликогена, имеющееся в печени, изменяется в соответствии с суточным ритмом; оно зависит также от состояния питания индивидуума. Гликоген печени является хранилищем глюкозы и мобилизуется, если уровень глюкозы в крови падает ниже нормального. Таким путем гепатоциты поддерживают постоянный уровень глюкозы в крови, которая является одним из главных источников энергии, используемой организмом.

Каждый гепатоцит содержит приблизительно 2000 митохондрий. Другими распространенными клеточными компонентами являются липидные капельки, количество которых варьирует в широких пределах. Лизосомы гепатоцита важны для обновления и разрушения внутриклеточных органелл. Подобно лизосомам, пероксисомы являются содержащими ферменты органеллами, обильно представленными в гепатоцитах. Некоторыми из их функций являются окисление избытка жирных кислот, разрушение перекиси водорода, образованной окислением (посредством активности каталазы), расщепление избытка пуринов (АМФ, ГМФ) до мочевой кислоты и участие в синтезе холестерола, желчных кислот и некоторых липидов, используемых для образования миелина.

Комплекс Гольджи в гепатоцитах также является множественным - до 50 в одной клетке. Функции этой органеллы включают образование лизосом и секрецию белков плазмы (например, альбумина, белков системы комплемента), гликопротеинов (например, трансферрина) и липопротеинов (например, липопротеинов очень низкой плотности).

У человека встречаются ряд редких наследственных нарушений функций пероксисом, большей частью связанных с мутациями ферментов, которые обнаруживаются в пероксисомах. Например, связанная с Х-хромосомой адренолейкодистрофия (X-ALD) развивается вследствие неспособности нормально метаболизировать жирные кислоты, что приводит к изменениям миелиновых оболочек отростков нейронов. Попытка найти эффективное лечение этого заболевания стала сюжетом вышедшего в 1992 г. фильма «Масло Лоренцо».

Обычно гепатоциты не накапливают белки в своей цитоплазме в виде секреторных гранул, а непрерывно выделяют их в кровоток. Около 5% белка, секретируемого печенью, вырабатывается клетками макрофагальной системы (клетками Купфера); остальные синтезируются гепатоцитами.

Синтез белка и накопление углеводов в печени. Углеводы накапливаются в виде гликогена, обычно в связи с агранулярной эндоплазматической сетью (аЭПС). При потребности в глюкозе гликоген расщепляется. При некоторых заболеваниях расщепление гликогена снижено, что приводит к его аномальному внутриклеточному накоплению. Белки, вырабатываемые гепатоцитами, синтезируются в гранулярной эндоплазматической сети (грЭПС); это объясняет, почему повреждения гепатоцитов или голодание приводят к снижению содержания альбумина, фибриногена и протромбина в крови пациента. Нарушение белкового синтеза вызывает ряд осложнений, так как большая часть этих белков являются переносчиками, важными для поддержания осмотического давления крови и ее свертывания.

Секреция желчи является экзокринной функцией в том смысле, что гепатоциты обеспечивают захват, переработку и выведение компонентов крови в желчные капилляры. Желчь содержит несколько других важных компонентов вдополнение к воде и электролитам: желчные кислоты, фосфолипиды, холестерол, лецитин и билирубин. Около 90% этих веществ получаются благодаря всасыванию эпителием дистальной кишки и транспортируются гепатоцитами из крови в желчные капилляры (энтеропеченочная рециркуляция). Примерно 10% желчных кислот синтезируются в аЭПС гепатоцита посредством конъюгации холевых кислот (синтезируемых печенью из холестерола) с аминокислотами глицином или таурином, в результате чего образуются гликохолевая или таурохолевая кислоты. Желчные кислоты обладают важной функцией в эмульгировании липидов в пищеварительном тракте, обеспечивая их более легкое переваривание липазами и последующее всасывание.

От 70 до 90% билирубина образуется вследствие разрушения гемоглобина стареющих циркулирующих эритроцитов, которое осуществляется, главным образом, в селезенке, но происходит также и во всей остальной периферической системе мононуклеарных фагоцитов, включая клетки Купфера в печени. В крови билирубин тесно связан с альбумином. После переноса в гепатоцит, вероятно, посредством механизма облегченного транспорта, гидрофобный билирубин конъюгируется в аЭПС с глюкуроновой кислотой, с образованием водорастворимого глюкуронида билирубина. На следующем этапе глюкуронид билирубина секретируется в желчные капилляры.

Часто используемыми функциональными тестами печени являются измерения уровня билирубина в сыворотке крови (показатель печеночной конъюгации и экскреции), альбумина и протромбино-вого времени (показатели белкового синтеза). Аномальные результаты этих тестов типичны для дисфункции печени.

Липиды и углеводы накапливаются в печени в форме триглицеридов и гликогена. Эта способность запасать метаболиты играет важную роль, потому что она обеспечивает организм энергией в промежутках между приемами пищи. Печень также служит главным местом накопления витаминов, особенно витамина А. Витамин А попадает в организм с пищей, достигает печени с другими пищевыми липидами в форме хиломикронов. В печени витамин А запасается в клетках Ито. Гепатоцит обеспечивает также синтез глюкозы из других метаболитов - таких, как липиды и аминокислоты, посредством сложного ферментного процесса, известного как глюконеогенез (греч. glykys - сладкий + neos - новый + genesis - выработка).

Он представляет собой также и главное место дезаминирования аминокислот, в результате чего вырабатывается мочевина. Мочевина транспортируется кровью к почкам и выделяется этими органами. Различные лекарственные препараты и вещества могут инактивироваться путем окисления, метилирования или конъюгации.

Секреция билирубина. Водонерастворимая форма билирубина образуется в результате обмена гемоглобина в макрофагах. Активность глюкуронилтрансферазы в гепатоцитах обусловливает конъюгацию билирубина с глюкуронидом в агранулярной эндоплазматической сети (аЭПС), в результате чего образуется водорастворимое соединение. При блокировании секреции желчи окрашенные вжелтый цветбилирубин или глюкуронид билирубина не выводятся, накапливаясь в крови и вызывая желтуху. Ряд нарушений процессов в гепатоцитах могут вызвать заболевания, которые приводят к желтухе: нарушение способности клетки к захвату и всасыванию билирубина (1), неспособность клетки конъюгировать билирубин вследствие дефицита глюкуронилтрансферазы (2), затруднения переносаи выведения глюкуронидабилирубинавжелчные капилляры (3). Одной из наиболее частых причин желтухи, хотя и не связанной с активностью гепатоцитов, является нарушение оттока желчи вследствие желчнокаменной болезни или опухоли поджелудочной железы.

Ферменты, участвующие в этих процессах, локализованы, главным образом, в аЭПС. Глюкуронилтрансфераза, фермент, который обеспечивает конъюгацию глюкуроновой кислоты с билирубином, также вызывает конъюгацию ряда других соединений, таких, как стероиды, барбитураты, антигистаминные и противосудорожные препараты. В некоторых условиях лекарственные препараты, которые инактивируются печенью, могут индуцировать увеличение объема аЭПС гепатоцитов, тем самым усиливая способность органа к детоксикации.

Введение барбитуратов лабораторным животным вызывает быстрое развитие аЭПС в гепатоцитах. Барбитураты могут также усилить синтез глюкуронилтрансферазы. Эти данные привели к использованию барбитуратов влечении недостаточности глюкуронилтрансферазы.

Регенерация печени

Несмотря на низкую скорость обновления клеток, печень обладает необычайной способностью к регенерации. Утрата ткани печени вследствие хирургического удаления или действия токсических веществ запускает механизм, благодаря которому гепатоциты начинают делиться, что продолжается до тех пор, пока не восстановится первоначальная масса ткани. У человека эта способность существенно ограничена, но все же остается достаточно выраженной, поэтому фрагменты печени могут быть использованы при хирургической трансплантации печени.

Ткань регенерировавшей печени обычно хорошо организована, в ней выявляется типичное дольковое строение, и функционально она замещает разрушенную ткань. Однако когда происходит непрерывное или повторное повреждение гепатоцитов в течение длительного периода времени, размножение клеток печени сопровождается существенным увеличением содержания соединительной ткани. Вместо образования нормальной ткани печени происходит формирование узелков различных размеров, большая часть которых видна невооруженным глазом. Эти узелки состоят из центральной массы дезорганизованных гепатоцитов, окруженных значительным количеством соединительной ткани, очень богатой коллагеновыми волокнами.

Кровоснабжение печени

Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации. Сосуды обеих сосудистых систем распадаются на долевые, сегментарные, субсегментарные и, наконец, междольковые артерии и вены. Последние входят в состав триад. От междольковых артерий и вен отходят вокругдольковые сосуды. Они окружают дольку по периметру. От вокругдольковых артерий и вен начинаются короткие артериолы и венулы, которые входят в дольку, сливаются вместе и дают синусоидные капилляры. В капиллярах течет смешанная кровь, причем ее состав может регулироваться сфинктером в стенке вокругдольковой артерии. Синусоидные капилляры идут радиально к центру дольки, сливаются и образуют центральную вену. Из центральной вены кровь собирается в собирательные или поддольковые вены, далее в печеночные вены и в нижнюю полую вену.

Желчевыводящие пути служат для отведения желчи в двенадцатиперстную кишку. Желчь образуется гепатоцитами и поступает в желчные капилляры. Желчные капилляры имеют диаметр 0,5 1,5 мкм. На периферии классической дольки желчные капилляры впадают в короткие канальцы Геринга, выстланные плоским или кубическим эпителием. Канальцы Геринга впадают в холангиолы, которые окружают дольку по периметру. Из холангиол образуются междольковые выводные протоки, входящие в состав триад и выстланные однослойным кубическим, а более крупные - призматическим эпителием. Кроме эпителия в состав стенки междольковых выводных протоков входит собственная пластинка из рыхлой волокнистой соединительной ткани. Все перечисленные сосуды являются внутрипеченочными желчными путями. Междольковые выводные протоки продолжаются во внепеченочные желчные пути: правый и левый печеночные (долевые), общий печеночный проток, сливающийся с пузырным протоком с образованием общего желчного протока. Все эти протоки построены по типу слоистых органов: имеют слизистую оболочку (однослойный цилиндрический эпителий и собственная пластинка из рыхлой волокнистой соединительной ткани), мышечную и адвентициальную оболочки.

Гепатоциты (Г) в печеночной пластинке (ПП) несколько отделены друг от друга. На рисунке один из них срезан, чтобы продемонстрировать его внутреннюю структуру.

Гепатоцит - полигональная клетка печени с двумя видами поверхности. Синусоидальные поверхности ориентированы в направлении печеночных синусоидных капилляров (СК) и покрыты микроворсинками (Мв). Почти гладкие желчные поверхности, каждая из которых расположена между двумя синусоидальными поверхностями, формируют половину стенки желчных канальцев (ЖК).

Гепатоциты - большие клетки размероммкм. Около 25% из них - двуядерные; 70 % - одноядерных гепатоцитов тетраплоидны и около 2 % - октаплоидны, т. е. с 4- или 8-кратным диплоидным набором хромосом.

Каждое ядро (Я) округлое и имеет одно или более ядрышек. Цитоплазма включает около 800 эллиптических или удлиненных митохондрий (М).

Хорошо развитый мультипластинчатый комплекс Гольджи (КГ) (до 50 комплексов) группируется обычно рядом с ядром и желчными канальцами. Удлиненные цистерны гранулярной эндоплазматической сети (ГЭС) часто продолжаются в трубочки агранулярной эндоплазматической сети (аГЭС). Лизосомы (Л), пероксисомы (П), частички гликогена (ЧГ), липидные капельки (ЛК) и свободные рибосомы находятся в большом количестве в цитоплазме гепатоцита.

По средней линии между двумя синусоидальными поверхностями гепатоцитов находится бороздка, которая идет вокруг тела клетки. Эта бороздка и соответствующая бороздка противоположного гепатоцита формируют канал шириной 0,5-1,5 мкм - желчный каналец (ЖК), или желчный капилляр. Желчные канальцы здесь не имеют собственных стенок. Канальцы могут иметь короткие ответвления, их внутренняя поверхность усеяна микроворсинками. Главной функцией гепатоцитов является секреция желчи в желчные канальцы с помощью механизма, который до сих пор не изучен. Чтобы предотвратить проникновение желчи в кровь, желчные канальцы закрыты замыкающими поясками (ЗП) - непроницаемыми плотными соединениями, которые идут вдоль них. В дополнение к ним пояски слияния (ПС) укрепляют кромки канальцев. Они располагаются в форме узкого пояса снаружи от замыкающего пояска.

Сверх того, гепатоциты соединены множеством нексусов (Н) и маленькими шишковидными интердигитациями (указаны стрелками).

Желчные канальцы продолжаются в терминальные желчные канальцы на периферии долек. Между желчными канальцами соседних долек нет анастомозов.

Печеночные пластинки ограничены с обеих сторон печеночными синусоидными капиллярами с эндотелиальными клетками (ЭК), которые имеют решетчатые пластинки (РП) и большие отверстия (О). Печеночные синусоидные капилляры не имеют базальной мембраны, поэтому микроворсинки видимы через эти отверстия. Диаметр этих отверстий обычно меньше, чем диаметр тромбоцитов и эритроцитов (Э), так что только плазма крови проходит через них и вступает в контакт с гепатоцитами.

Между гепатоцитами и стенкой печеночных синусоидных капилляров находится пространство Диссе (ПД), которое почти полностью заполнено микроворсинками гепатоцитов. Несколько ретикулярных и коллагеновых волокон (KB) проходят через пространство Диссе.

Описание и строение клеток гепатоцитов

Печень на 60-85% состоит из гепатоцитов в количествемлрд. Каждый гепатоцит выполняет важную роль в промежуточных реакциях печеночного метаболизма. Клетки способны:

  • участвовать в продукции и хранении протеинов;
  • корректировать процессы преобразования углеводов;
  • регулировать образование холестерина и кислот желчи;
  • помогать в процессах выведения токсичных эндогенных субстанций;
  • активизировать процессы образования желчи в печени.

Гепатоцит, как и любая другая клетка в организме, имеет ограниченное количество делений за весь период жизни. Если происходит постоянное разрушение гепатоцитов, в определенный промежуток времени они перестают восстанавливаться, а патологии, вызвавшие деструктивный процесс, становятся хроническими и необратимыми.

Клетки являются крупными и многокомпонентными. Львиный процент структуры составляют митохондрии, ретикулум, эндоплазма, гликоген, комплексы Гольджи, отвечающие за определенный набор свойств.

Поверхность гепатоцитов – ровная с небольшими участками, к которым с одной стороны крепятся желчные канальцы, а с другой – кровеносные синусоиды. Крепление осуществляется через особые микроворсинки, различающиеся по диметру сечения и длине. Большое количество этих соединительных волокон свидетельствует о высокой активности процессов поглощения и секреции. Из прямостоящих гепатоцитов формируются две дольки печени: правя и левая.

Функции

Из-за сложности строения функции гепатоцитов разнообразны:

  • Регулировка количества глюкозы в жидкой части крови. В присутствии инсулина гепатоциты выхватывают из кровотока лишнюю глюкозу, преобразуют ее в гликоген, который скапливается в цитоплазме. Гидрокортизон (гормон коры надпочечников) корректирует процесс. При нехватке глюкозы в крови происходит расщепление гликогена, а продуктами реакции восполняется дефицит сахара.
  • Осуществление метаболизма жирных кислот. Процессы регулируются в цитоплазме гепатоцитов, которая содержит митохондрии, лизосомы, гладкие и гранулярные микротельца и ретикулум, продуцирующие ферменты для расщепления и преобразования жиров и липопротеидов.
  • Синтез специфичных белков кровяной плазмы, таких как альбумин, фибриноген, глобулин (кроме иммуноглобулинов).
  • Дезактивация лекарственных препаратов, химвеществ, алкоголя, стероидных гормонов, всасывающихся в кишечнике.
  • Выработка больших объемов лимфы, обогащенной белками.
  • Продукция желчи. В гепатоцитах имеются микроворсинки, которые передают микрокомпоненты желчи в малые желчные канальцы у границ каждой печеночной дольки. Эти канальцы объединяются в крупные внутрипеченочные протоки из кубического эпителия с базальной мембраной. Желчь продуцируется непрерывно (по 1,2 л за 24 часа), но она не вся поступает в кишечник. Когда приток пищи отсутствует, желчь направляется в желчный пузырь через отдельный пузырный проток, ответвленный от внутрипеченочного канала.

Синдром цитолиза

Болезнь включает в себя группу патологических состояний, при которых происходит деструкция гепатоцитов печени в результате некротических или дистрофических изменений в паренхиме. Характер патологии определяется причинами его возникновения. В зависимости от вида и тяжести болезни процесс разрушения печеночных клеток обратимый (посредством естественной или медикаментозной регенерации) или необратимый.

При цитолизном поражении разрушается защитная оболочка гепатоцита, после чего активные ферменты начинают работать против самой печени, провоцируя некроз и дистрофию тканей. Цитолиз может возникнуть в любом возрасте, например, в младенчестве - аутоимунная деструкция, у людей старше 50-ти лет - жировое перерождение. Клиническая картина синдрома зависит от стадии недуга, степени повреждений. Долгое время болезнь не дает о себе знать. При быстром прогрессе или тотальном разрушении гепатоцитов наблюдается выраженная желтуха кожи, глазных склер и слизистых. Объясняется пожелтение активным выбросом билирубина в кровь, сигнализирующим о нарушении метаболизма.

Поражение клеток печени может быть восстанавливаемым или нет.

Другим характерным признаком того, что началось глобальное повреждение гепатоцитов, является пищеварительная дисфункция, выражающаяся:

  • повышением кислотности желудочного сока;
  • отрыжкой;
  • изжогой;
  • горьковатым послевкусием во рту после еды и натощак.

На последних стадиях разрушения проявляется печеночная симптоматика, связанная с изменениями органа в размерах:

  • боли справа в подреберье;
  • пальпирование уплотнения в области проекции больной печени.

Причины

Существует широкая группа факторов, которые могут привести к повреждению гепатоцитов. Самые значимые причины деструкции органа следующие:

В группе риска скорого повреждения гепатоцитов являются люди:

Здоровье печени находится под угрозой у людей часто принимающих таблетки, живущих в экологически загрязнённых районах, с вредными привычками и с нездоровым питанием.

  • имеющие болезни печени с гепатоцитарной недостаточностью, нарушением кровотока в органе;
  • женского пола (при беременности, в пожилом и старческом возрасте);
  • находящиеся на несбалансированной диете или на длительном парентеральном питании из-за резкого снижения массы тела, вегетарианцы;
  • живущие в неблагоприятной окружающей среде, например, в зонах, загрязненных тяжелыми металлами, инсектицидами, диоксином и прочими токсинами;
  • чрезмерно употребляющие в обиходе чистящие средства бытовой химии;
  • принимающие одновременно три и более видов лекарств.

Лечение и профилактика

Чтобы восстановление гепатоцитов прошло успешно, в первую очередь, важно избавиться от воздействия отрицательного фактора, вызвавшего заболевание, например:

  • исключить бесконтрольное лечение медпрепаратами;
  • полностью отказаться от алкоголя;
  • вести активный образ жизни;
  • качественно отдыхать и высыпаться;
  • пересмотреть питание в пользу правильного питания.

Может потребоваться смена места жительства и профессии.

  • Диетотерапия. Особенно эффективна при применении на ранних стадиях, когда гепатоциты не утратили способность самовосстанавливаться. Питание - дробное, малыми порциями. Лечебный рацион должен включать:
  1. рыбу, морепродукты;
  2. каши из круп;
  3. цельнозерновой хлеб;
  4. кисломолочку;
  5. отвары на костях;
  6. вареные яйца;
  7. растительные масла;
  8. отварные овощи, свежие фрукты с ягодами без костей;
  9. сухофрукты, орехи;
  10. куркуму, чеснок;
  • Периодическая чистка печени. Перед переходом на лечебную диету (далее, 1-2 раза в год) следует проводить очищение организма. Для этого применяется метод слепого зондирования с магнезией или другие народные способы чистки подручными средствами, которые можно применить в домашних условиях.
  • Медикаментозная терапия. Лекарства для восстановления гепатоцитов наделены следующими задачами:
  1. защищают здоровые и восстанавливают поврежденные клетки;
  2. запускают синтез новых гепатоцитов;
  3. активизируют способности клеток разрастаться и забирать функции поврежденных гепатоцитов на себя, что позволяет делать работу печени в полной мере до устранения повреждений;
  4. нормализуют синтез и отток желчи.

Такие препараты содержат аминокислоты, фосфолипиды, ферменты, важные для обеспечения защиты межклеточных мембран. К ним относятся представители натурального происхождения, синтезированные из вытяжек печени животных. Некоторые из них - комбинированные. Примеры: «Гептрал», «Гепабене», «Карсил», «Эсенциале», «Галстена», «Хофитол», «Аллохол», «Урсофальк».

  • Народные средства. Рецепты применяются в качестве дополнения к основной терапии. Популярные:
  1. чай из рылец и столбиков кукурузы;
  2. напиток из разведенного водой меда с корицей;
  3. смешанный настой из сока лимона, яблочного уксуса, меда, оливкового масла;
  4. варенье из цветков одуванчика на воде, сдобренный соком лимона, сахаром;
  5. сок из майского лопуха.

Гепатоцит - основная структурная клетка паренхимы печени человека и животных. Гепатоциты составляют около 60% всех клеток печени, но поскольку они больше других клетки печени, то их масса составляет 80% общей массы печени. По подсчетам, количество гепатоцитов составляет около 300 миллиардов.

Гистологический препарат тканей печени человека, окраска гематоксилином и эозином

Структура

Гепатоциты имеют вид полигональной клетки диаметром 13-30 микрометров. Средний объем гепатоцита составляет 3,4 x 10 -9 см 3. Гепатоцит имеет 6 или более поверхностей, и два полюса: синусоидальный, который ориентирован в направлении печеночных синусовидных капилляров и покрытые ворсинками; и желчный или билиарный, расположенных между двумя синусоидальными поверхностями и формируют стенку желчных канальцев. Через синусоидальный полюс проходит всасывания различных веществ из крови, а через билиарный полюс проходит желчь и другие веществ, производимых в гепатоцитах, в просвет желчных канальцев. Гепатоцит ограничен двухконтурной белково-липидной плазматической мембраной, имеет высокую ферментативную активность, в том числе содержит ферменты, которые катализируют активный транспорт ионов и молекул через мембрану как внутрь клетки, так и из клетки. У желчных канальцев клеточные мембраны гепатоцитов связанные плотным соединением. Между гепатоцитами и стенкой печеночных синусоидальных капилляров размещен пространство Диссе, почти полностью заполнен микроворсинками гепатоцитов. Своими латеральными поверхностями гепатоциты образуют печеночные балки, из которых состоят сегменты и доли печени.

Синусоидальный капилляр и гепатоцит на электронно-микроскопическом снимке печени крысы.

В центральной части гепатоцита размещено ядро диаметром от 7 до 16 микрометров, с одним или двумя ядрышками. Около 75% гепатоцитов имеют одно ядро, причем 70% от общего их количества является тетраплоидной, около 2% от общего количества является октаплоиднимы; а 25% от общего количества гепатоцитов являются двухъядерными. В гепатоцитах хорошо развитый эндоплазматический ретикулум, как гранулярная эндоплазматическая система, так и агранулярная эндоплазматическая система. В гранулярном эндоплазматический ретикулум размещено большое количество рибосом, в агранулярного эндоплазматическом ретикулуме рибосомы отсутствуют. В гепатоцитах хорошо развитый комплекс Гольджи (до 50 комплексов). По разным подсчетам, в гепатоцитах содержатся от 800 до 2000 митохондрий. Кроме перечисленных органелл, в цитоплазме гепатоцита содержатся лизосомы, пероксисомы, дольки гликогена, капли липидов и филаментозни структуры.

Функции

Основной функцией гепатоцита является секреция желчи, которая включает в себя захват, переработку и выведение компонентов желчи в желчные капилляры. Этот механизм пока не изучен до конца. Одной из составляющих синтеза желчи является конъюгация гидрофобного токсического билирубина с помощью фермента глюкуронилтрансферазы к водорастворимого нетоксичного глюкуронил билирубина, который выделяется в желчь. Для предупреждения попадания желчи в кровь желчные канальцы закрываются так называемыми замыкающими поясками - непроникающими плотными соединениями, которые проходят вдоль них, а как дополнение к ним крае канальцев укрепляют так называемые пояса слияния.

Другой важной функцией гепатоцитов является участие в обмене глюкозы. При увеличении поступления глюкозы в кровь гепатоциты под влиянием инсулина проводят переработку избытка глюкозы в гликоген, который откладывается в виде зерен в цитоплазме гепатоцитов. При недостатке глюкозы под действием фермента глюкозо-6-фосфатазы гликоген в гепатоцитах метаболизируется до глюкозы. гепатоциты также обеспечивают синтез глюкозы из других химических соединений, в частности липидов и аминокислот путем сложных ферментных преобразований, который носит название глюконеогенез.

Важную роль играют гепатоциты и в синтезе белков. Гепатоциты синтезируют альбумины, большую часть глобулинов, фибриноген, а также большую часть других белков, участвующих в свертывании крови. Гепатоциты не производят лишь иммуноглобулинов, которые производят плазматические клетки. Белки в гепатоцитах синтезируются в эндоплазматическом ретикулуме, и через комплекс Гольджи проходят в свободной поверхности клетки, откуда выделяются с помощью механизма экзоцитоза. В гепатоцитах преимущественно также происходит дезаминирование аминокислот с образованием мочевины, которая позже транспортируется почек и выводится ими из организма.

Значительная роль гепатоцитов также в обмене липидов и липопротеинов. Гепатоциты участвуют в удалении крупнейших липопротеидных частиц - ХМ - из крови после приема жирной пищи, позже в гепатоцитах под влиянием ферментов осуществляется синтез мелких частиц липопротеинов и преобразования их в пре-Р-липопротеины, а позже в Р-липопротеины, и другие более мелкие, структурные соединения клеток, в частности холестерин и фосфолипиды. В гепатоцитах также происходит накопление резервов лидидив в виде триглицеридов. В гепатоцитах происходит также накопление витаминов, особенно витамина A, которое в основном происходит в так называемых клетках Ито.

Важную роль играют гепатоциты также и в удалении токсичных веществ, которые попадают в организм извне или образующиеся в процессе метаболизма. Эта роль клеток печени обеспечивается ферментами микросомального окисления и происходит преимущественно в специальных образованиях - микросомах. Гепатоциты обеспечивают преобразования, в частности, аммиака, этанола, стероидных гормонов, а также лекарственных средств и других химических веществ, которые попадают в организм из разных источников.

Регенерация

Продолжительность жизни гепатоцита составляет от 200 до 400 дней, однако, несмотря на низкую скорость обновления клеток, печень обладает высокой способностью к регенерации. В частности, в экспериментах на животных при удалении до 75% объема печени она восстанавливает свои нормальные размеры течение нескольких дней. Правда, в восстановленной после хирургического удаления ткани печени меньше гепатоцитов, и больше соединительнотканных элементов. Механизм регенерации печени не исследован до конца. Долгое время считалось, что в печени отсутствуют стволовые клетки, а регенерация проходит на внутриклеточном уровне, а также за счет митоза полиплоидных гепатоцитов. Однако более поздними исследованиями в печени обнаружены стволовые клетки, которые расположены недалеко венозных сосудов в дольками печени, которые имеют способность к активному делению, а при повреждении печени перемещаются в пораженные участки. Некоторое время считалось, что активное размножение этих стволовых клеток может привести к возникновению рака печени, однако по данным последних исследований, это предположение не подтвердилось. Пока неясным остается механизм прекращения деления клеток, а именно, почему на этапе, когда достигнута предыдущий показатель массы органа, то деление клеток останавливается. На данный момент выдвинуто предположение о регуляции этого процесса определенными белковыми соединениями, в частности трансформирующий фактор роста.