Система микроциркуляции крови в организме. Система микроциркуляции: особенности функциональной организации и регуляции

СИСТЕМА МИКРОЦИРКУЛЯЦИИ

Акад. АМН СССР В. В. К у п р и я н о в, к. м. н. В. В. Банин

По вопросам, близким к освещаемой теме, в БМЭ опубликованы статьР1 Кровеносные сосуды, Лимфатические сосуды, Микроциркуляция, Проницаемость и др.

В настоящее время под системой микроциркуляции по-нихмают совокупность путей перемещения жидкостей в организме на микроскопическом уровне, способов переноса ионов, молекул, клеток, а также процессов обмена веществ, необходимых для жизнеобеспечения организма. Это открытая, живая система, обладающая свойством самоорганизации, зависящая от гомеостаза и воздействующая на него. Система микроциркуляции играет важную роль в живом организме. Существование живой материи на всех уровнях и во всех формах организации (клетки, ткани, органы) возможно только при условии доставки им необходимых питательных, пластических, регулирующих веществ и кислорода через систему микроциркуляции.

Первоосновой системы микроциркуляции в филогенезе является дососудистая микроциркуляция у низших беспозвоночных. С выделением эндотелия возникла система внутрисосудистой микроциркуляции, к-рая широко сообщалась с тканевыми лакунами, а затем все более и более обособлялась. Замкнутая микроциркуляция существует у кольчатых червей. У рыб кровеносная и лимфоносная система разделяются. Одновременно с обособлением внутрисосудистой микроциркуляции сохраняется и вне-сосудистая; обе системы сообщаются через субмикроско-пические отверстия в стенках капилляров.

У зародыша человека на ранних стадиях развития также наблюдается внесосудистая микроциркуляция, благодаря к-рой осуществляется гистотрофное питание. У 21-дневного эмбриона начинает сокращаться сердце; к этому времени образуются кровеносные сосуды и развивается внутрисосудистая микроциркуляция. Эндотелиальная выстилка, возникающая из клеток мезенхимы, в первичных капиллярах не является сплошной и непрерывной. Лимфатические капилляры также появляются на основе тканевых щелей. Внесосудистая микроциркуляция, обеспечивающая доставку веществ к клеткам и дренаж тканей, сохраняется в последующем в виде интерстициального транспорта.

Термин «микроциркуляция» был впервые применен в 1954 г. и вначале рассматривался как синоним капиллярного кровообращения. Однако исследователям, объединившим свои усилия в изучении микроциркуляции, постепенно становилось ясно, что концентрация внимания только на транспорте крови по микрососудам и через их стенки не позволяет охватить содержание проблемы в целом. В СССР была сформулирована точка зрения, согласно к-рой под микроциркуляцией следует понимать все транспортные и обменные процессы на микроскопическом уровне. Эта точка зрения была обсуждена на VII Всесоюзном съезде анатомов, гистологов и эмбриологов (1966). Продолжение работ в избранном направлении и системный подход к накопленным знаниям привели к

Выделению В. В. Куприяновым (1972) системы микроциркуляции.

Интенсификация исследований по физиологии и патологии микроциркуляции в СССР связана гл. обр. с деятельностью А. М. Чернуха, его учеников и сотрудников. В их исследованиях были применены новые методики (телевизионная техника, прижизненные исследования с применением люминесцентной микроскопии и др.). По-новому были освещены вопросы проницаемости мембран, способы регуляции транспорта веществ, в частности роль в этих процессах системы тучных клеток. После Всесоюзных конференций по микроциркуляции (1972, 1977 и 1984) расширилось использование данных, касающихся микроциркуляции, в практической медицине.

Структура системы микр оциркуляции

Любая живая система, выражающая определенное единство органического субстрата, предполагает наличие подсистем, элементов, их связей и взаимодействий, т. е. структуру системы. В системе микроциркуляции первоначально была выделена материальная основа - весьма чуткая и мобильная мозаика путей микроциркуляции - микроциркуляторное русло. Оно соединяет артериальный отдел кровеносного русла с венозным, поэтому может быть названо гемомикроциркуляторным. Вместе с тем оно включает лимфоносные пути на микроскопическом уровне. Пути межсосудистого транспорта жидкостей, соединяющие сосуды гемомикроциркуляции и лимфатические микрососуды, и сосудисто-тканевые коммуникации также являются компонентами микроциркуляторного русла. Т. о., в состав микроциркуляторного русла входят все звенья гемомикроциркуляции (артериолы, прекапилля-ры, истинные капилляры, посткапилляры, венулы и атериоловенулярные анастомозы), микро лимфоносные

пути (лимфатические капилляры, посткапилляры, начальные и собирательные лимфатические сосуды) и интерстициальные, по к-рым перемещается тканевая жидкость. Микроциркуляторное русло - это морфологическая основа системы микроциркуляции, разделяемой на три подсистемы (компартменты, отсеки): кровеносную, лимфоносную и интерстициальную.

В отличие от классической ангиологии, рассматривающей в качестве центрального объекта исследования кровеносный капилляр, учение о микроциркуляции на основе трехкомпартментной модели перемещает центр внимания исследователей на анализ взаимоотношений и взаимодействий между кровью, интерстициальной жидкостью и лимфой. Такой анализ чрезвычайно важен для понимания основной функции системы микроциркуляции - обеспечения жизнедеятельности клеток. Начиная с 50-х гг. 20 в.- периода зарождения и становления учения о микроциркуляции-прослеживаются последовательные этапы изучения закономерностей организации микроциркуляторного русла и выполнения им гемодинамических и транспортных функций. Основа плодотворного исследования гемодинамики и связанных с ней процессов транс-

Порта жидкости через стенки капилляров была заложена работами известного американского патолога Цвейфаха (В. W. Zweifach).

Системно-структурный подход стал теоретической базой для понимания системы микроциркуляции как универсальной в масштабе всего организма системы жизнеобеспечения. Микроциркуляторное русло рассматривается в настоящее время как своеобразный «орган» циркуляторного и тканевого гомеостаза, ответственный за метаболический и жидкостный (водный) баланс в организме.

И. П. Павлов видел прогресс физиологии кровообращения «в систематическом исследовании тех взаимоотношений, в которых находятся отдельные составные части сложной гемодинамической машины во время ее жизнедеятельности». К таким исследованиям принадлежит изучение микроциркуляции крови по тончайшим сосудам, являющимся тоже частями сложной «гемодинамической машины».

Но гемодинамика на микроуровне определяется не только внутренними силами кровообращения, она закономерно подчинена метаболическим потребностям тканей, условиям окружающей капилляры среды (интерсти-ция) и даже уровню лимфообразования. Т. о., лишь при всестороннем охвате всех элементов системы микроциркуляции могут быть объяснены процессы макро- и микроциркуляции по сосудистым и внесосудистым путям. Возникает необходимость совместного рассмотрения циркуляции крови, образования и транспорта лимфы, движения жидкости и веществ через стенки обменных сосудов ж в интерстиции. Хотя каждый элемент системы микроциркуляции играет определенную, специфическую роль в транспортных взаимодействиях, решающим является итоговый, совокупный результат функционирования всего микроциркуляторного русла органа, поскольку деятельность элементов подчинена общей задаче обеспечения тканевого гомеостаза.

Микр оциркуляторное

кровеносное русло

Представления о структуре и функциях всех отделов кровеносной системы за последние десятилетия коренным образом изменились вследствие новых подходов и разработки более совершенных технических приемов. Кардинальные изменения произошли в изучении терминального отдела системы кровообращения. В результате углубленного исследования гемомикроциркуляторного русла упразднено старое понимание капиллярной сети как единой структуры на пути перехода артериальной крови в венозную. Кровеносные капилляры - не единственные компоненты микроциркуляторного русла, имеются еще прекапилляры и посткапилляры, артериолы и венулы, а также артериоловенулярные анастомозы. Новейшие методы ангиологического исследования дали возможность четко и безошибочно дифференцировать все звенья микроциркуляторного кровеносного русла, определять их гистотопографию, характер диффузии веществ между сосудами и рабочими клетками. Было установлено, что в различных органах, помимо известных ранее особенностей артериальной и венозной архитектоники, широко представлены различные варианты формы организации микроциркуляторного русла. В. В. Куприяновым предложена классификация, согласно к-рой выделяют такие формы, как сетевая с разновидностями в зависимости от контуров ячеек сетей (круглых, овальных, прямоугольных, квадратных, полигональных); аркадная, или кружевная; петлистая с вытянутыми в виде булав или шпилек петлями сосудов; корзинчатая и др. Особое значение приобрел морфологический анализ показателей плотности сосудов, приходящихся на единицу их, вдощади, величины расстояний между ними, протяженности и диаметра. В частности, дистанция от капилляра до рабочей клетки (диффузионное расстояние) колеблется от нескольких микрометров в интенсивно кровоснабжаемых органах (напр., в почке) до 50 мкм и боль-

Ше в соединительнотканных структурах. Все эти показатели включены в формулу органоспецифичности микроциркуляторного русла.

Компоненты микроциркуляторного русла органа взаимодействуют по принципам интеграции, причем каждый компонент (артериола, венула, капилляр, шунт) выполняет определенные функции. Вследствие этого всякие изменения микрососудов ведут к соответствующим изменениям в других сосудах, что сказывается на общей функции сосудистого бассейна органа. Так проявляется закон целостности организации и функционального синергизма всех компонентов микроциркуляторного русла.

С помощью современных методов подтверждена сохранность оптимального равновесия микроциркуляции при колебаниях гомеостаза и вместе с тем выяснены отклонения от этого состояния при патологии. Так, при нормальной проницаемости стенок сосудов микроциркуляторного русла объем жидкости, уходящей из крови, и объем жидкости, * возвращающейся в нее, равны. Преобладание фильтрации жидкости не только вызывает гидратацию тканей и органов, но и сопровождается временным снижением объема циркулирующей в сосудах крови. При обезвоживании организма дефицит плазмы компенсируется интенсивной резорбцией интерстициальной жидкости.

Расстройства периферической гемомикроциркуляции сопровождаются колебаниями дебита крови в данном регионе или в целом органе. Чаще снижается количество крови, протекающей через микроциркуляторное русло (гипотрансфузия). Увеличение дебита крови наблюдается при снижении периферического сопротивления кровотоку и при гипертензии. От степени заполнения сосудов зависит и проницаемость их стенок.

Микроциркуляторное русло является основным звеном органной сосудистой пластичности. Из этого следует, что его функциональное состояние должно находиться в центре внимания клинициста-ангиолога, т. к. нарушения микроциркуляции в большинстве случаев являются первопричиной дальнейших сосудистых (и не только сосудистых) расстройств.

Пластичность микроциркуляторного русла как один из механизмов адаптации базируется на трех типах структурных приспособлений: первый тип - приспособления, регулирующие резервуарные функции сосудов, способные увеличивать емкость сосудистого русла органа; второй тип - приспособления, необходимые для перераспределения крови и лимфы, регулирующие направление и скорость кровотока и лимфотока; третий тип - приспособления, служащие для изменения проницаемости стенок сосудов. Дальнейшая разработка концепции пластичности и реактивности микроциркуляторного русла в клинической практике осуществляется с помощью биомикроскопии кровеносных сосудов конъюнктивы глазного яблока и сосудов ногтевого ложа.

Резерв повышения емкости сосудистого русла мобилизуется в условиях нарастания функциональных нагрузок. Только за счет растяжимости стенок микрососудов емкость органного кровеносного бассейна может быть удвоена. Под влиянием накапливающейся крови сосуды микроциркуляторного русла становятся извитыми, образуются петли и клубочки капилляров, появляются сосудистые лакуны, венозные озера, синусоиды. При необходимости усиления кровоснабжения тканей увеличивается число капилляров, приходящееся на единицу площади, развивается гипертрофия мышечных элементов сосудистой стенки. И в случае расширения просветов сосудов, и при новообразовании капилляров изменяется площадь поперечного сечения общей массы сосудов органа. Структурные приспособления, перераспределяющие кровь, обеспечивают также надежность васкуляризации органа в целом.

Регуляция проницаемости сосудистых барьеров основана на разнообразии форм и способов организации путей

Транспорта жидкости и растворенных в ней веществ через эндотелий. Именно это легло в основу существующих классификаций кровеносных капилляров. Наиболее распространенным и удобным в практическом отношении является разделение капилляров на соматические, висцеральные и синусоидные. Соматические капилляры имеют сплошную, непрерывную и нефенестрированную эндотелиальную выстилку. Эндотелиоциты чаще всего соединяются посредством плотных контактов, хотя последние могут заметно различаться по степени проницаемости для жидкости и макромолекул. Симионеску (N. Si-mionescu) и соавт. (1975), Я. Л. Караганов и соавт. (1985) предполагают, что эти различия, по-видимому, связаны с вариациями в развитии сети контактных фибрилл, состоящих из внутримембранных частиц плаз-молемм клеток. Базальная мембрана соматических капилляров обычно хорошо выражена; она сплошная и, расщепляясь, окружает перициты - особые соединительнотканные клетки, к-рые входят в состав стенки капилляров. Соматические капилляры типичны для мышц, кожи, сердца, легких, головного и спинного мозга, а также других органов и тканей.

Эндотелиальная выстилка висцеральных (окончатых) капилляров также непрерывная, однако в периферических зонах клеток ее толщина минимальна. Вследствие этого образуются окошки (фенестры), связывающие просвет сосуда с перикапиллярным пространством. В капиллярах слизистой оболочки кишечной стенки, поджелудочной железы фенестры прикрыты тонкими однослойными диафрагмами, к-рые рассматривают как дериваты предельно истонченной плазмолеммы клетки. В других тканях, напр, в клубочках почки, фенестры не имеют таких диафрагм и представляют собой многочисленные округлые поры, прикрытые с интерстициальной поверхности клеток хорошо развитой утолщенной базальной мембраной.

Эндотелий капилляров синусоидного типа, характерных для печени, костного мозга, селезенки - несплошной, прерывистый, с обширными порами («дефектами»). Базальная мембрана таких капилляров окончатая, и их стенки допускают свободный обмен не только макромолекул, но и клеточных форм.

Отличительной особенностью эндотелия капилляров, как и сосудистого эндотелия вообще, являются многочисленные плазмолеммальные (микропиноцитозные) везикулы, составляющие иногда до 30-40% клеточного объема. Считается, что эти везикулы являются основным путем, посредством к-рого транспортируются в интерсти-ций белки плазмы. В последние годы появились обоснованные сомнения в универсальной транспортной функции везикулярного аппарата эндотелиоцитов, хотя его значение полностью отрицать нельзя. Сливаясь между собой и с поверхностями клеток, везикулы способны образовывать непрерывные коммуникации - трансэндотелиальные каналы, к-рые допускают транспорт белков в интерстициальное пространство за счет переноса током жидкости.

Различия в организации путей трансэндотелиального переноса в капиллярах разного типа, а также в отдельных сосудистых сегментах (артериальных и венозных капиллярах, посткапиллярах, венулах) коррелируют с проницаемостью их стенок для жидкости и белков плазмы крови. Так, эндотелий висцеральных капилляров характеризуется в 30-50 раз большей гидравлической проводимостью (коэффициентом фильтрации), чем эндотелий соматического типа. Проницаемость сосудистой стенки для воды и белка увеличивается по направлению к венозным отделам микроциркуляторного русла.

Стенка синусоидных капилляров практически не оказывает сопротивления переносу в интерстиций любых макромолекул, циркулирующих в крови. Именно поэтому содержание белка в лимфе, оттекающей от печени, почти не отличается от содержания его в плазме.

Условия доставки крови в капилляры зависят от строения артериол. Их диаметр достигает 100 мкм, тогда как прекапилляры имеют диаметр порядка 16-25 мкм. Стенка артериол состоит из трех оболочек, к-рые называются так же, как и оболочки мышечных артерий, но по своей структуре они скорее напоминают моноцеллюлярные слои. Так, наружная оболочка характеризуется относительным богатством фибриллярных элементов, между к-рыми рассеяны фибробласты, окруженные основным веществом. В средней оболочке артериол миоциты, как правило, лежат плотным слоем. В стенке прекаттил-ляра несколько миоцитов локализуются в месте разветвления прекапилляра на капилляры. Обращает на себя внимание спиральная скрученность мышечной клетки вокруг просвета микрососуда, что способствует более эффективному проталкиванию крови. Вместе с тем при спонтанных сокращениях мышечных клеток стенок микрососудов резко повышается периферическое сопротивление именно на уровне артериол и тонких артерий. Мио-эндотелиальные контакты в стенке артериол, выявленные с помощью электронной микроскопии, рассматриваются как способы обмена информацией и как средства инициации миогенных реакций.

Вопрос о прекапиллярных сфинктерах окончательно не решен. Существует два мнения: первое - сфинктером следует называть скопление миоцитов в зоне ветвления артериол, поскольку безмышечный участок в окклюзии просвета не участвует; второе - вся прекапиллярная артериола, независимо от распределения мышечных клеток, является прекапиллярным сфинктером. Однако расхождение мнений не носит принципиального характера, т. к. и в том и другом случае остается в силе указание И. II. Павлова о наличии в периферических сосудах «кранов», регулирующих кровоток. Такими «кранами» вполне могут быть прекапиллярные сфинктеры, поскольку они, во-первых, имеют узкий просвет, во-вторых, этот просвет охвачен циркулярно расположенными мышечными клетками, в-третьих, в местах концентрации этих клеток встречаются множественные миоэндотели-альные контакты.

Регуляция проницаемости сосудистой стенки осуществляется на уровне субмикроскопических клеточных структур: увеличиваются размеры и численность везикул, фе-нестр, образуются трансэндотелиальные каналы, изменяется цитоскелет эндотелиальных клеток. Благодаря этим приспособительным преобразованиям поддерживается устойчивость обмена между кровью и тканями. Т. о., строение микроциркуляторного русла отражает единство гемодинамических констант и метаболических функций.

В результате слияния капилляров образуются первые венулярные трубки, называемые посткапиллярными венулами, или посткапиллярами. Они действительно стоят ближе к капиллярам, чехМ к собирательным вену лам, к-рые (при наличии в их стенках миоцитов) называют еще мышечными венулами. Как правило, стенка венулы тонкая, легко проницаемая не только для воды с растворенными в ней кристаллоидами, но и для макромолекул. Посткапиллярные венулы мало отличаются от капилляров и по диаметру (в среднем 8-15 мкм), собирательные венулы имеют больший размер (диаметр до 80 мкм). По данным Родина (J. A. G. Rhodin), отношение диаметра просвета посткапилляров к толщине их стенки равняется 10:1, а для собирательных венул этот показатель составляет 50:1. В связи с увеличением диаметра венул в формировании их стенок должно принимать участие большее число эндотелиальных клеток.

Эндотелиальная выстилка посткапилляров и венул отличается нек-рыми особенностями организации трансмуральных каналов, служащих для переноса воды и различных веществ. Проницаемость межклеточных контактов для плазменных белков типа альбумина в венулах заметно больше, чем в капиллярах, трансэндотелиальные каналы встречаются чаще. В нек-рых органах, нанр. в

лимфатических узлах, посткапиллярные венулы выстланы высоким эндотелием и служат основным местом миграции иммунокомпетентных клеток. Стенки посткапил-лярных венул брюшины имеют в 1,5-1,8 раза большую гидравлическую проводимость (проницаемость для воды), чем стенки других обменных кровеносных микрососудов.

Венулы собирают кровь из микроциркуляторного русла и направляют ее в венозные коллекторы. Как емкостным сосудам венулам присущи дренажные, резервуарные и депонирующие функции. Их доля участия в периферическом сопротивлении кровотоку составляет 20% от общего сосудистого сопротивления. Остальные 80% приходятся на резистивные сосуды - артерии и артериолы. По оценкам В. И. Козлова (1975), в венозном звене микроциркуляторного русла сосредоточивается до 40% крови, протекающей по сосудам. Сумма капиллярной и венулярной емкости в периферическом кровеносном русле достигает 85% емкости всего кровеносного бассейна. Б. И. Ткаченко обоснованно считает, что весьма значительная роль в кровообращении и поддержании нормальной функции органов принадлежит емкостным сосудам.

Среди многих структурных механизмов, регулирующих микрогемодинамику, особое место занимают артериоло-венулярные анастомозы. Их значение как шунтирующих устройств в настоящее время не вызывает сомнений. Но роль артериовенулярных анастомозов гораздо более значительна. Речь идет о существовании двух путей транспорта крови в микроциркуляторном русле: основного (транскапиллярного) и добавочного (юкстакапил-лярного). Шунты позволяют несколько разгрузить капиллярный кровоток и предотвратить гемостаз. При функциональных нагрузках и в условиях патологии арте-риоловенулярные анастомозы расширяются.

Ранее выделяли артериовенозные анастомозы замыкающего и гломусного типа. Исследования, проведенные в последние десятилетия, показали, что сброс крови из артериального звена в венозное по укороченным путям, или шунтам, происходит на микроуровне, т. е. на уровне артериол и венул. Такие сосудистые формации, названные артериоловенулярными анастомозами, признаны закономерными компонентами микроциркуляторного русла. Следует различать артериальный отдел артериолове-нулярного анастомоза, снабженный мышечными клетками {запирательными устройствами), и венулярный, безмы-шечный. Артериоловенулярные анастомозы без запирательных устройств обозначают как полушунты в связи с тем, что по ним сбрасывается не артериальная кровь, а смешанная. Полушунты выявляются в твердой оболочке головного и спинного мозга, в серозных оболочках, в эндокринных органах. Каналы предпочтительного кровотока также могут быть уподоблены полушунтам.

Начальные отделы лимфатической системы

В любой кровоснабжаемой области имеются и лимфатические микрососуды. Исключение представляют различные отделы ц. н. с., сетчатка глаза, костная ткань. Жидкость и различные вещества, в т. ч. протеины плазмы, к-рые переносятся через стенки кровеносных микрососудов, вместе с растворимыми продуктами жизнедеятельности клеток образуют тканевую или интерстициальную жидкость. Часть тканевой жидкости, включающая воду и низкомолекулярные соединения, ре-абсорбируется в кровеносные сосуды. Однако этот объем всегда меньше объема жидкости, фильтрующейся в ткань из плазмы. Общая масса протеина, к-рая транспортируется в ткань через стенки кровеносных микрососудов, составляет почти 50% количества, циркулирующего в плазме, а в тканях белка содержится больше, чем в крови. Основной путь, посредством к-рого в плазму возвращается избыток фильтрующейся жидкости и большая часть белка,- это лимфатические микрососуды. Т. о., интерстициальная жидкость, содержащая протеины, и составляет лимфу. Концентрация белка в ней варьи-

Рует в широких пределах (от 30 до 90% концентрации в плазме) в зависимости от региона, а следовательно, от проницаемости кровеносных микрососудов, функционального состояния органа, интенсивности фильтрации, лимфообразования и т. д.

Механизмы поступления интерстициальной жидкости в просвет резорбирующих лимфатических сосудов еще окончательно не выяснены. Считают, что основной силой, способствующей лимфатической резорбции и продвижению лимфы к коллекторным сосудам, является разница гидростатического давления в интерстициальном пространстве и просвете лимфатических капилляров. Касли-Cmht(J. R. Gasley-Smith, 1983) допускает также возможность «насасывания» жидкости из тканей за счет более высоких концентраций белка в лимфе.

Микролимфоносное русло - сложный комплекс связанных между собой лимфатических капилляров, посткапилляров, начальных и собирательных лимфатических сосудов. Различные лимфатические сегменты топографически и функционально тесно связаны с кровеносными микрососудами, и эта связь определяет дифференцированное участие лимфатических капилляров и посткапилляров в резорбции различных компонентов интерстициальной жидкости.

Лимфатические капилляры - тонкостенные широкие эндотелиальные каналы, диаметр к-рых может достигать 200 мкм. Начинаются они либо как слепые пальцевидные выпячивания, либо как фрагменты сети, лишенные клапанов. Стенка лимфатических капилляров образована истонченными эндотелиальными клетками, а в нек-рых тканях - фрагментарной базальной мембраной. Тканевая жидкость и макромолекулы проникают в просвет капилляров через межклеточные щели; нек-рые из них могут быть открытыми очень широко - от 50 нм до 1-2 мкм. Частота появления «открытых» контактов в лимфатическом эндотелии коррелирует с интенсивностью резорбции и, следовательно, гематолимфатического обмена. «Открытые» контакты, свободно пропускающие макромолекулы, частицы (хиломикроны) и даже клетки, довольно часто встречаются в лимфатических капиллярах диафрагмы, ворсинок тонкой кишки и др. Считают, что степень открытия межклеточных щелей регулируется натяжением якорных и стройных филаментов - тонких соединительнотканных волокон, фиксирующихся к плазмолемме эндотелиоцитов. Накапливающаяся в просвете капилляров лимфа продвигается в следующие сегменты за счет периодически возникающей разницы давлений, открывающей клапаны. Лимфодинамика стимулируется также давлением окружающих тканей, напр, при сокращении мышц, и механизмом насасывания в коллекторные лимфатические сосуды.

Лимфатические посткапилляры. Как только в просвете лимфатических капилляров возникает лимфоток, резорбированная жидкость перемещается в другие сегменты лимфоносных путей. Традиционно считалось, что из капилляров лимфа попадает в лимфатические сосуды. В. В. Куприяновым (1969) установлено, что в лимфатических сетях и сплетениях ячейки сформированы в основном такими эндотелиальными каналами, к-рые содержат клапаны, - лимфатическими посткапиллярами. Створки клапанов в них представляют собой складки (дубликатуры) эндотелия с немногочисленными коллагеновыми фибриллами. Благодаря клапанам ячейки или цепочки лимфатических посткапилляров имеют четкообразные контуры. Лимфатические посткапилляры - типичные резорбирующие микрососуды. Строение их стенок почти не отличается от строения лимфатических капилляров. Лишь по мере приближения к уровню лимфатических сосудов более отчетливо и регулярно выявляется базальная мембрана и в ближайшем ее окружении увеличивается содержание соединительнотканных волокон. Эндотелиальные клетки, образующие стенки посткапилляров, менее крупные: в 1 мм2 поверхности сосу

Дов насчитывается ядер на 25% больше, чем в капиллярах.

Лимфатические посткапилляры, по данным В. В. Банина (1981), способны интенсивно резорбировать макромолекулы из своего окружения. Их функциональное значение весьма велико, поскольку посткапилляры расположены в тканях рядом с венулами, через стенки к-рых транспорт протеинов в интерстиций происходит наиболее активно. В нек-рых тканях, напр, в брюшине млекопитающих, общая площадь поверхности лимфатических посткапилляров в 2-6 раз превышает поверхность капилляров.

Интерстициальная жидкость и протеины проникают в просвет лимфатических посткапилляров через межклеточные контакты. В переносе белков через эндотелий посткапилляров и капилляров принимают участие многочисленные микропиноцитозные везикулы. Они составляют существенную часть общего клеточного объема. Сквозные трансэндотелиальные каналы в эндотелии лимфатических микрососудов образуются гораздо реже, чем в эндотелии кровеносных микрососудов.

По мере накопления лимфы в просвете посткапилляра увеличивается гидростатическое давление, и при достижении определенной пороговой его величины открывается клапан в последующий сегмент. Т. о., лимфодинамика и резорбтивная деятельность в цепочках или ячейках лимфатических посткапилляров регулируются развитым клапанным аппаратом. Периодически в отдельных посткапиллярах (межклапанных сегментах) лимфа задерживается, и тогда нек-рая часть воды может отфильтровываться из просвета обратно в ткань. При очередной фазе изгнания в центростремительном направлении перемещается уже более концентрированная лимфа. Содержащиеся в ней белки способны создавать более высокое коллоидно-осмотическое давление, чем в окружающей тканевой жидкости, и тем самым привлекать воду в просвет сосуда. Этот механизм в совокупности с особенностями топографии лимфатических капилляров и посткапилляров обеспечивает тонкую и точную адаптацию процессов лимфообразования к интенсивности фильтрации жидкости и белка из кровеносных микрососудов.

Начальные и собирательные лимфатические сосуды. В этих лимфатических сегментах появляются признаки дополнительных, неэндотелиальных сосудистых оболочек - соединительнотканные волокна и единичные клетки, окружающие базальную мембрану и тесно примыкающие к ней. По мере продвижения лимфы в центростремительном направлении стенки сосудов утолщаются, в их составе появляются миоциты, к-рые в последующем формируют уже непрерывный слой. Створки клапанов лимфатических сосудов более толстые, чем в лимфатических посткапиллярах. В них хорошо развита соединительнотканная волокнистая основа, включающая клеточные формы (фибробласты). В области, где фиксируются створки клапанов, и непосредственно перед ними формируется утолщенная манжета стенки, образованная сгущением волокон и миоцитов. Такие микрососуды выполняют преимущественно дренажные функции: межклеточные контакты в эндотелиальной выстилке образованы плотными комплексами, эндотелий заметно утолщен, а количество везикул уменьшено.

Гистофотометрическое сравнение содержания белка в резорбирующих сегментах (капиллярах и посткапиллярах) и в просвете собирательных лимф, сосудов свидетельствует о нарастании концентрации белка в лимфе по мере ее пассажа к регионарным лимф, узлам.

Интерстициальное пространство

В паренхиматозных и полых органах кровеносные и лимфоносные пути погружены в интерстициальный гель. Это основное вещество соединительной ткани образует вместе с фибриллярными компонентами интерстициальное пространство. В нем концентрируется в 3 раза боль-

Ший объем воды, чем в плазме крови. Интерстициальная жидкость, являясь важнейшим компонентом внутренней среды организма, способна в физиологических условиях сохранять достаточно постоянные состав и физико-химические свойства. Однако тканевой гомеостаз не только не исключает, но и предусматривает постоянное обновление, движение межклеточной среды. Поскольку в формировании интерстициальной жидкости участвуют прежде всего кровеносные и лимфатические микрососудыт гематолимфатический перенос является важным фактором гомеостаза.

В отличие от путей движения крови и лимфы анатомически четко выделяемых путей для транспорта интерстициальной жидкости, по-видимому, нет. В нек-рых современных гипотезах обсуждается, однако, возможность преимущественного движения тканевой жидкости, в т. ч. и макромолекул, по так наз. интерстициальным каналам - пространствам в матриксе, содержащим относительно мало гликозаминогликанов. Получены также данные, свидетельствующие о распространении белков вдоль соединительнотканных волокон или около стенок лимфатических микрососудов.

Движение интерстициальной жидкости в тканях принципиально может быть связано с двумя процессами: конвекцией, возникающей как результат градиентов гидростатического или коллоидно-осмотического давления, и диффузией, зависящей от разницы концентраций того или иного вещества. Твердой уверенности в том, что гидростатическое давление в разных точках пространства может заметно различаться, пока нет. Возможно, что это различие связано с неодинаковой гидратацией матрикса вследствие вариаций интенсивности фильтрации жидкости из кровеносных микрососудов.

Конкретные значения интерстициального давления в разных тканях могут отличаться очень значительно, от -2 до -6 мм рт. ст. в подкожной соединительной ткани, по данным Сколандера (A. F. Scholander), до +4 - 15 мм рт. ст. в почке, селезенке, миокарде, по данным Грейнджера (R. G. Grainger). Различия в измеряемых величинах могут быть связаны и с самим способом измерения. Отсутствие согласованного мнения не только по поводу конкретных величин тканевого давления, но и его природы затрудняет понимание механизмов таких важных процессов, как лимфообразование.

Как уже отмечалось, содержание плазменных белков в интерстициальном пространстве зависит от проницаемости стенок микрососудов для макромолекул. В тканях, капилляры к-рых имеют соматический тип эндотелия, напр, в мышцах, концентрация белка составляет не менее 30% концентрации в плазме крови. Как показали исследования Видерхильма (С. A. Wiederhielm, 1972), осмотический эффект протеинов, в основном альбумина, заметно усиливается благодаря их взаимодействию с «фиксированными» биополимерами интерстициального пространства - гликозаминогликанами, коллагеном. Величина интерстициального коллоидно-осмотического давления оценивается обычно в диапазоне 7-11 мм рт. ст. Она существенно зависит от содержания воды в интерстициальном пространстве и регулируется резорбтивной деятельностью корней лимфатической системы. В связи с тем, что проницаемость различных кровеносных микрососудов для протеинов неодинакова, содержание белка в интерстициальном пространстве может существенно варьировать. Фотометрический анализ показывает, что концентрация альбумина и других белков средней массы у стенок ве-нул в 3-4 раза превышает концентрацию их в других отделах. Возникающие концентрационные градиенты способны перемещать интерстициальную жидкость и ориентировать ее потоки к резорбирующим лимфатическим микрососудам. Диффузия молекул белка в ткани ограничивается матриксом основного вещества, и степень этого ограничения связана с гидратацией ткани. Состояния, способствующие фильтрации жидкости в ткань из

Плазмы (венозный застой, действие вазоактивных веществ типа гистамина, воспаление и др.), обычно приводят к повышению гидратации интерстициального геля, увеличению давления в нем, усилению транспорта белка и как результат этого - к стимуляции лимфообразования. Совокупность этих процессов, важных для поддержания водного баланса, образно называют фактором безопасности против отека.

Структурно-функциональные единицы микроциркуляторного русла

Пространственная ориентация, структурные параметры и гемодинамиче-ские характеристики микроциркуляторного русла в различных органах имеют свои особенности в зависимости от их строения, выполняемых функций и энергетических (метаболических) потребностей составляющих их тканей. Объединяющим фактором структурной организации микроциркуляторного русла, по всей вероятности, должна быть нек-рая «базовая ячейка» - единица, отражающая общий принцип структуры системы микроциркуляции. Попытки выделения такой базовой единицы предпринимались еще в исследованиях А. К рога (1927), предложившего модель «тканевого цилиндра». В последующем обсуждались такие единицы, как капиллярон, сегмент, микрорайон, функциональный элемент. Степень их конструктивной сложности, а также широта охвата всего многообразия транспортных процессов в тканях весьма различны. Наибольшее распространение получили представления о сегменте, или модуле, объединяющем комплекс кровеносных микрососудов и позволяющем проводить эффективный анализ микрогемодинамики в них. Однако движение крови по микрососудам является лишь частью, хотя и очень важной, деятельности системы микроциркуляции. В рамках гемодинамической модели трудно изучать такие явления, как проницаемость, интерстициальный транспорт и лимфообразование. Поэтому в качестве структурно-функциональной единицы микроциркуляторного русла целесообразно рассматривать весь комплекс сосудистых (кровеносных и лимфатических) и внесосудистых коммуникаций, принимающих участие в обеспечении метаболических нужд определенной области ткани. Формальными границами такой области могут служить конструкции, сформированные из анастомозирующих артериол и сопровождающих их венул, или другие закономерно повторяющиеся сосудистые ассоциации. Очень важно, чтобы такие комплексы включали и лимфоносные пути, нахо-

Дящиеся в определенных топографических отношениях с кровеносными микрососудами. Интерстициальное пространство такой области ткани выступает как универсальный посредник, связующее звено не только между кровеносными и лимфатическими микрососудами, но и между микрососудами и любыми клеточными элементами. В такой миниатюрной единице, ассимилирующей любые транспортные процессы, протекающие в данной тканевой области, воплощена модель всего микроциркуляторного русла. Фактически модуль является своеобразным эквивалентом структурно-функциональной единицы органа и отражает органоспецифичность в такой же мере, как и специфику организации и функционирования всей системы микроциркуляции.

Библиогр.: Бунин А. Я., Кацне льсон Л. А. и Яковлев А. А. Микроциркуляция глаза, М., 1984, библиогр.; Караганов Я. Л., Кердиваренко Н. В. и Левин В. Н. Микроангиология: Атлас, Кишинев, 1982; Козлов В. И. и Тупиц ын И. О. Микроциркуляция при мышечной деятельности, М., 1982, библиогр.; Куприянов В.В. Пути микроциркуляции, Кишинев, 1969, библиогр.; Куприянов В. В., Караганов Я. Л. и Козлов В. И. Микроциркуляторное русло, М., 1975, библиогр.; Куприянов В. В. и др. Мик-ролимфология, М., 1983, библиогр.; Малая Л. Т., Мик-л я е в И. Ю. и КравчунП. Г. Микроциркуляция в кардиологии, Харьков, 1977, библиогр.; Микроциркуляция в патологии* под ред. А. М. Сазонова, М., 1975; Мотав кин П. А., Ломакин А. В. и Черток В.М. Капилляры головного мозга. Владивосток, 1983; Мчедлишвили Г. И. Спазм артерий головного мозга, Тбилиси, 1977; Петровский Б. В., Раб-кин И. X. и Матевосов А. Л. Рентгенорадиоизотопные исследования микроциркуляции в клинике, М., 1980, библиогр; Ревской А. К. и Савицкий Г. Г. Клиническая оценка микроциркуляции, Томск, 1983, библиогр.; Ткаченко Б. И. Венозное кровообращение, Л., 1979; Транспорт веществ и тканевая недостаточность, под ред. Г. М. Покалева, Горький, 1978; Физиология кровообращения, Физиология сосудистой системы, под ред, Б. И. Ткаченко и др., Л., 1984; Чернух А. М., Александ-р о в П. Н. иАлексеев О. В. Микроциркуляция, М., 1975,

библиогр.; Шахламов В. А. Капилляры, М., 1971; Шах* ламов В. А. и Цамерян А. П. Очерки по ультраструктур-ной организации сосудов лимфатической системы, Новосибирск* 1982; Шошенко К. А. Кровеносные капилляры, Новосибирск* 1975; Lymphangyology, ed. by М. Foldi a. J. R. Casley-Smith* Stuttgart - N. Y., 1983; Microcirculation, ed. by J. Grayson a. W. Zingg, N. Y.- L., 1976; Microcirculation, ed. by G. Kaley а. В. M. Altura, v. 1-3, Baltimore, 1977-1980; The microcircu-lation in clinical medicine, ed. by R. Wells, N. Y., 1973; Micro-circulation in inflammation, ed. by G. Hauck a. J. W. Irwin, Basel a. o., 1979; R h o d i n J. A. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins, J. Ultrastruct. Res., v. 25, p. 452, 1968; Tissue fluid pressure and composition, ed. by A. R. Hargens, Baltimore, 1981.

В системе периферического кровообращения условно выделяют микроциркуляторное, или терминальное, сосудистое русло, которое, в свою очередь, в соответствии с делением сосудов на крове- и лимфоносные, делится на микроциркуляторное крове- и лимфоносное русло. Микроциркуляторное кровеносное русло состоит из сосудов, диаметр которых не превышает 100 мкм, т. е. артериол, метартериол, капиллярных сосудов, венул и артериоловенулярных анастомозов. В нем осуществляются доставка питательных веществ и кислорода к тканям и клеткам, удаление из них углекислоты и "шлаков", поддерживаются равновесие притекающей и оттекающей жидкости, оптимальный уровень давления в периферических сосудах и тканях.

Другими словами, микроциркуляторное кровообращение - это кровообращение в мельчайших сосудах. Или же, микроциркуляция -- упорядоченное движение крови и лимфы по микрососудам, транскапиллярный перенос плазмы и форменных элементов крови, перемещение жидкости во внесосудистом пространстве.

Для изучения микроциркуляции у человека используют микрососуды конъюнктивы и радужной оболочки глаз, слизистой оболочки носа и рта. Применение световодной техники позволяет изучить особенности микроциркуляции и во внутренних органах (головном мозге, почках, печени, селезенке, легких, скелетной мышце и др.).

Большой вклад в дело разработки теоретических, экспериментальных и прикладных аспектов проблемы микроциркуляции внесли видные патофизиологи А.М.Чернух (1979), Ю.В.Быць (1995) и др.

Микроциркуляторное лимфоносное русло представлено начальным отделом лимфатической системы, в котором происходят образование лимфы и поступление ее в лимфатические капилляры. Процесс образования лимфы имеет сложный характер и заключается в переходе жидкости и растворенных в ней веществ, в том числе белков, через стенку кровеносных капиллярных сосудов в межклеточное пространство, распространении веществ в периваскулярной соединительной ткани, резорбции капиллярного фильтрата в кровь, резорбции белков и избытка жидкости в лимфоносные пути и т. д.

Таким образом, с помощью микроциркуляторного кровообращения осуществляется тесное гематоинтерстициальное и лимфоинтерстициальное взаимодействие, направленное на поддержание необходимого уровня метаболизма в органах и тканях в соответствии с их собственными потребностями, а также потребностями организма в целом.

Нарушения микроциркуляции принадлежат к типовым патологическим процессам, лежащим в основе многих заболеваний и травм.

От состояния микроциркуляции зависит:

  • · поддержание адекватных биохимических реакций в органах и тканях;
  • · осуществление многочисленных клеточных функций;
  • · выраженность репаративных процессов (регенерация, заживление);
  • · течение воспалительных процессов;
  • · изменения в системе свертывания крови.

Схематически микроциркуляторное русло состоит из артериол (в том числе терминальных артериол), капилляров, венул, артериовенозных анастомозов (на рисунке AVA), интерстициального пространства между ними и резорбтивных сосудов - лимфатических капилляров. (Приложение. Рис. 1)

Микроциркуляторное звено - ключевое. Работа сердца и всех отделов сердечно-сосудистой системы приспособлены к созданию оптимальных условий для микроциркуляции (низкое и постоянное АД, кровоток обеспечен наилучшими условиями для поступления продуктов обмена, жидкости в кровяное русло из клеток и наоборот).

Артериолы - приносящие сосуды. Внутренний диаметр - 40 нм, метартериолы - 20 нм, прекапиллярные сфинктеры - 10 нм. Для всех характерно наличие выраженной мышечной оболочки, поэтому они называются резистивными сосудами. Прекапиллярный сфинктер расположен в месте отхождения от метартериолы прекапилляра. В результате сокращения и расслабления прекапиллярного сфинктера достигается регуляция кровенаполнения ложа, следующего за прекапилляром.

Капилляры - обменные сосуды. К этому компоненту русла микроциркуляции относятся капилляры, в некоторых органах они из-за своеобразной формы и функции называются синусоидами (печень, селезенка, костный мозг). Согласно современным представлениям, капилляр - тонкая трубка диаметром 2-20 нм, образованная одним слоем эндотелиальных клеток, без мышечных клеток. Капилляры ответвляются от артериол, могут расширяться и сужаться, т.е. изменять свой диаметр независимо от реакции артериол. Число капилляров равняется приблизительно 40 миллиардам, общая протяженность - 800 км, площадь - 1000 , каждая клетка удалена от капилляра не более чем на 50-100 нм.

Венулы - отводящие сосуды диаметром около 30 нм. В стенках гораздо меньше мышечных клеток по сравнению с артериолами. Особенности гемодинамики в венозном отделе обусловлены наличием в венулах диаметром 50 нм и больше, клапанов, препятствующих обратному кровотоку. Тонкостенность венул и вен, большое их количество (в 2 раза больше, чем приносящих сосудов) создает огромные предпосылки для депонирования и перераспределения крови из резистивного русла в емкостное. лимфа микрососуд дегрануляция диапедез

Сосудистые мостики - "обводные каналы" между артериолами и венулами. Обнаружены почти во всех частях тела. Поскольку эти образования встречаются исключительно на уровне микроциркуляторного русла, более правильно называть их "артериоло-венулярными анастомозами", их диаметр - 20-35 нм, на ткани площадью 1,6 регистрируется от 25 до 55 анастомозов.

Под микроциркуляцией принято понимать совокупность взаимосвязанных процессов, включающих кровоток в сосудах микроциркуляторного русла и неразрывно связанные с ним обмен различными веществами крови и тканей и образование лимфы.

К микроциркуляторному сосудистому руслу относят терминальные артерии (ф < 100 мкм), артериолы, метартериолы, капилляры, венулы (рис. 1). Совокупность этих сосудов рассматривают как функциональную единицу сосудистой системы, на уровне которой кровь выполняет свою главную функцию — обслуживание метаболизма клеток.

Рис. 1. Схема микроциркуляторпого сосудистого русла

Микроциркуляция включает движение крови жидкости через кровеносные сосуды диаметром не более 2 мм. С помощью этой системы осуществляется движение жидкости в межтканевых пространствах и движение лимфы в начальных отделах лимфатического русла.

Характеристика микроциркуляции
  • Общее число капилляров в организме человека — около 40 млрд
  • Общая эффективная обменная поверхность капилляров — около 1000 м 2
  • Плотность капилляров в различных органах варьирует на 1 мм 3 ткани от 2500-3000 (миокард, головной мозг, печень, почки) до 300-400/мм 3 в фазных единицах скелетных мышц, до 100/мм 3 в тонических единицах и менее в костной, жировой и соединительной тканях
  • Обменный процесс в капиллярах главным образом происходит путем двухсторонней диффузии и фильтрации/реабсорбции

В состав микроциркуляционной системы входят: терминальные артериолы, прекапиллярный сфинктер, собственно капилляр, посткапиллярная венула, венула, мелкие вены, артериоловенулярные анастомозы.

Рис. Гидродинамические характеристики сосудистого русла

Обмен веществ через капиллярную стенку регулируется с помощью фильтрации, диффузии, абсорбции и пиноцитоза. Кислород, диоксид углерода, жирорастворимые вещества легко проходят через капиллярную стенку. Фильтрация — процесс выхода жидкости из капилляра в межклеточное пространство, а абсорбция — обратное поступление жидкости из межклеточного пространства в капилляр. Эти процессы осуществляются в результате разницы гидростатического давления крови в капилляре и интерстициальной жидкости, а также благодаря изменению онкотического давления плазмы крови и интерстициальной жидкости.

В состоянии покоя на артериальном конце капилляров гидростатическое давление крови достигает 30-35 мм рт. ст., а на венозном конце снижается до 10-15 мм рт. ст. В интерстициальной жидкости гидростатическое давление отрицательное и составляет -10 мм рт. ст. Разность гидростатического давления между двумя сторонами стенки капилляра способствует переходу воды из плазмы крови в интерстициальную жидкость. , создаваемое белками, в плазме крови составляет 25-30 мм рт. ст. В интерстициальной жидкости содержание белка меньше и онкотическое давление также ниже, чем в плазме крови. Это способствует передвижению жидкости из интерстициального пространства в просвет капилляра.

Диффузный механизм транс капиллярного обмена осуществляется в результате разности концентраций веществ в капилляре и межклеточной жидкости. Активный механизм обмена обеспечивается эндотелиальными клетками капилляров, которые с помощью транспортных систем в их мембранах переносят определенные вещества и ионы. Пиноцитозный механизм способствует транспорту через стенку капилляра крупных молекул и частиц клеток путем эндо- и экзопиноцитоза.

Регуляция капиллярного кровообращения происходит за счет влияния гормонов: вазопрессина, норадреналина, гистамина. Вазопрессин и норадреналин приводят к сужению просвета сосудов, а гистамин — к расширению. Сосудорасширяющим свойством обладают простагландины и лейкотриены.

Капилляры человека

Капилляры представляют собой тончайшие сосуды диаметром 5-7 мкм, длиной 0,5-1,1 мм. Эти сосуды пролегают в межклеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма.

Суммарная длина всех капилляров тела человека составляет около 100 000 км, т.е. нить, которой можно было бы трижды опоясать земной шар по экватору. Около 40% капилляров являются действующими капиллярами, т.е. заполненными кровью. Капилляры раскрываются и наполняются кровью во время ритмических мышечных сокращений. Капилляры соединяют артериолы с венулами.

Виды капилляров

По строению эндотелиальной стенки все капилляры условно подразделяются на три вида:

  • капилляры с непрерывной стенкой («закрытые»). Эндотелиальные клетки их тесно прилегают друг к другу, не оставляя зазоров между собой. Капилляры данного вида широко представлены в гладких и скелетных мышцах, миокарде, соединительной ткани, легких, центральной нервной системе. Проницаемость этих капилляров достаточно жестко контролируется;
  • капилляры с окошечками (фенестрами) или окончатые капилляры. Они способны пропускать вещества, диаметр молекул которых достаточно велик. Такие капилляры локализованы в почечных клубочках и слизистой кишечника;
  • капилляры с прерывистой стенкой , в которых между соседними эпителиальными клетками имеются щели. Через них свободно проходят крупные частицы, в том числе форменные элементы крови. Такие капилляры расположены в костном мозге, печени, селезенке.

Физиологическое значение капилляров состоит в том, что через их стенки осуществляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.

Скорость движения крови в капиллярах

Скорость кровотока в капиллярах невелика и составляет 0,5-1 мм/с. Таким образом, каждая частица крови находится в капилляре примерно 1 с. Небольшая толщина слоя крови (7-8 мкм) и тесный контакт его с клетками органов и тканей, а также непрерывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.

Рис. Линейная, объемная скорость кровотока и площадь поперечного сечения в различных отделах сердечно-сосудистой системы (наименьшая линейная скорость в капиллярах — 0.01-0,05 см/с; время прохождения крови через капилляр средней длины (750 мкм) — 2,5 с)

В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм 2 поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм 2 сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капиллярная сеть более густая, чем в белом.

Различают два вида функционирующих капилляров:

  • одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры);
  • другие представляют собой боковые ответвления от первых — они отходят от артериального конца магистральных капилляров и впадают в их венозный конец, образуя капиллярные сети.

Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других феноменах микроциркуляции.

Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной активности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает (феномен Крога ).

Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и метаболитов — осуществляются при воздействии их на артерии и артериолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т.е. соотношение эритроцитов и плазмы.

В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул - артериовенозные анастомозы. Это наиболее короткий путь между артериолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы открываются, то часть крови может поступать в вены, минуя капилляры.

Артериовенозные анастомозы играют роль шунтов, регулирующих капиллярное кровообращение. Примером этого является изменение капиллярного кровообращения в коже при повышении (свыше 35 °С) или понижении (ниже 15 °С) температуры окружающей среды. Анастомозы в коже открываются, и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в процессах терморегуляции.

Структурно-функциональной единицей кровотока в мелких сосудах является сосудистый модуль — относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.

Сосудистый модуль состоит из артериолы, прекапилляров, капилляров, посткапилляров, венул, артериоловенулярных анастомозов и лимфатического сосуда (рис. 2).

Микроциркуляция объединяет в себе механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.

Рис. 2. Сосудистый модуль

Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000-9000 л крови. Через стенку капилляров профильтровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Закономерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Старлингом. Гидростатическое давление крови в капиллярах (Р гк ) является основной силой, направленной на перемещение жидкости из капилляров в ткани. Основной силой, удерживающей жидкость в капилляром русле, является онкотическое давление плазмы в капилляре (Р ок ). Определенную роль играют также гидростатическое давление (Р гт ) и онкотическое давление тканевой жидкости (Р от ).

На артериальном конце капилляра Р гк составляет 30-35 мм рт. ст., а на венозном — 15-20 мм рт. ст. Р ок на всем протяжении остается постоянным и составляет 25 мм рт. ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации — выхода жидкости, а на венозном — обратный процесс, т.е. реабсорбция жидкости. Определенные коррективы вносит в этот процесс Р от , равное примерно 4,5 мм рт. ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная величина Р гт (минус 3 — минус 9 мм рт. ст.) (рис. 3).

Следовательно, объем жидкости, переходящей через стенку капилляра за 1 минуту (V), при коэффициенте фильтрации К равен

V=[(Р гк + Р от) — (Р гт -Р ок)]*К.

На артериальном конце капилляра V положителен, здесь происходит фильтрация жидкости в ткань, а на венозном V отрицателен и жидкость реабсорбируется в кровь. Транспорт электролитов и низкомолекулярных веществ, например глюкозы, осуществляется вместе с водой.

Рис. 3. Обменные процессы в капиллярах

Капилляры различных органов отличаются по своей ультраструктуре, а следовательно, по способности пропускать в тканевую жидкость белки. Так, I л лимфы в печени содержит 60 г белка, в миокарде — 30 г, в мышцах — 20 г, в коже — 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.

Таким образом, устанавливается динамический баланс крови в сосудистой системе с межклеточной жидкостью.

Обменные процессы между кровью и тканями

Обмен водой, газами и другими веществами между кровью и тканями осуществляется через структуры, называемые гистогематическими барьерами , за счет процессов диффузии, везикулярного транспорта, фильтрации, реабсорбции, активного транспорта.

Диффузия веществ

Одним из наиболее эффективных механизмов этого обмена является диффузия. Ее движущая сила — градиент концентрации вещества между кровью и тканями. На скорость диффузии влияет ряд других факторов, описываемых формулой Фика:

где dM/dt — количество вещества, диффундирующего через стенки капилляров за единицу времени; к — коэффициент проницаемости тканевого барьера для данного вещества; S - суммарная площадь поверхности диффузии; (С1 — С2) — градиент концентрации вещества; х — расстояние диффузии.

Как видно из приведенной формулы, скорость диффузии прямо пропорциональна площади поверхности, через которую идет диффузия, разности концентрации вещества между внутри- и внекапиллярной средой и коэффициенту проницаемости данного вещества. Скорость диффузии обратно пропорциональна расстоянию, на которое диффундирует вещество (толщина стенки капилляра приблизительно равна 1 мкм).

Коэффициент проницаемости неодинаков для разных веществ и зависит от массы вещества, его растворимости в воде или в липидах (более подробно см. «Транспорт веществ через клеточные мембраны»). Вода легко диффундирует через гистогематические барьеры, водные каналы (аквапорины), мельчайшие (4-5 нм) поры, межэндотелиальные щели (см. рис. 1), фенестры и синусоиды в стенке капилляров. Тип путей, используемых для диффузии воды, зависит от типа капилляров. Между кровыо и тканями организма идет постоянный интенсивный обмен водой (десятки литров в час). При этом диффузия не нарушает между ними водный баланс, так как количество воды, вышедшее из сосудистого русла путем диффузии, равно се количеству, вернувшемуся в него за то же время.

Дисбаланс между этими потоками создастся лишь при действии дополнительных факторов, ведущих к изменению проницаемости, градиентов гидростатического и осмотического давлений. Одновременно с водой через те же пути осуществляется диффузия растворенных в ней полярных низкомолекулярных веществ, минеральных ионов (Na + , К + , СI -), других водорастворимых веществ. Диффузионные потоки этих веществ также уравновешены и поэтому, например, концентрация минеральных веществ в межклеточной жидкости почти не отличается от их концентрации в плазме крови. Вещества, имеющие большие размеры молекул (белки), не могут пройти через водные каналы и поры. Например, коэффициент проницаемости для альбумина в 10 000 раз меньше, чем для воды. Низкая проницаемость тканевых капилляров для белков является одним из важнейших факторов сохранения их в плазме крови, где их концентрация в 5-6 раз больше, чем в межклеточной жидкости. При этом белки создают относительно высокое (около 25 мм рт. ст.) онкотическое давление крови. Однако в небольших количествах низкомолекулярные белки (альбумины) выходят из крови в межклеточную жидкость через межэндотелиальные пространства, фенестры, синусоиды и посредством везикулярного транспорта. Их возврат в кровь осуществляется с помощью лимфы.

Везикулярный транспорт веществ

Высокомолекулярные вещества не могут свободно перемещаться через стенку капилляров. Их транскапиллярный обмен осуществляется с помощью везикулярного транспорта. Этот транспорт происходит с участием везикул (кавеол), в которые заключаются транспортируемые вещества. Транспортные везикулы формируются мембраной эндотелиальной клетки, которая образует впячивания при контакте с белковой или с другими макромолекулами. Эти впячивания (инвагинации) замыкаются, затем отшнуровываются от мембраны, перенося заключенное вещество в клетку. Кавеолы могут диффундировать через цитоплазму клетки. При контакте везикул с внутренней стороной мембраны происходит их слияние и осуществляется экзоцитоз содержимого вещества за пределы клетки.

Рис. 4. Везизулы (кавеолы) эндотелиальной клетки капиляра.Межэндогелиальная щель показана стрелкой

В отличие от водорастворимых веществ жирорастворимые вещества переходят через капиллярную стенку, диффундируя через всю поверхность эндотелиальных мембран, которые образованы двойными слоями фосфолипидных молекул. Благодаря этому обеспечивается высокая скорость обмена такими жирорастворимыми веществами, как кислород, углекислый газ, алкоголь и др.

Фильтрация и реабсорбция

Фильтрацией называют выход воды и растворенных в ней веществ из капилляров микроциркуляторпого русла во внесосудистое пространство, происходящий под действием сил положительного фильтрационного давления.

Реабсорбцией называют возврат воды и растворенных в ней веществ в кровеносное русло из внесосудистых пространств тканей и полостей тела под действием сил отрицательного фильтрационного давления.

Каждая частичка крови, включая молекулы воды и растворенных в воде веществ, находится под действием сил гидростатического давления крови (Р гк), численно равного давлению крови в данном участке сосуда. В начале артериального участка капилляра эта сила около 35 мм рт. ст. Ее действие направлено на вытеснение частичек крови из сосуда. В то же время на эти же частички действуют противоположно направленные силы коллоидно-осмотического давления, стремящиеся удержать их в сосудистом русле. Важнейшее значение в удерживании в сосудистом русле воды имеют белки крови и создаваемая ими сила онкотического давления (Р онк), равная 25 мм рт. ст.

Выходу воды из сосудов в ткани способствует сила онкотического давления интсрстициальной жидкости (Р омж), создаваемая вышедшими в нее из крови белками и численно равная 0-5 мм рт. ст. Препятствует выходу из сосудов воды и растворенных в ней веществ сила гидростатического давления интерстициальной жидкости (Р гиж), также численно равная 0-5 мм рт. ст.

Силы фильтрационного давления, обусловливающие процессы фильтрации и реабсорбции, возникают в результате взаимодействия всех перечисленных сил. Однако, учитывая то, что в нормальных условиях силы давления интерстициальной жидкости практически близки к нулю или уравновешивают друг друга, величина и направление действия силы фильтрационного давления определяются прежде всего взаимодействием сил гидростатического и онкотического давления крови.

Решающим условием для фильтрации вещества через стенку капилляра являются его молекулярная масса и возможность прохождения через поры мембраны эндотелия, межэндотелиальные щели и базальную мембрану капиллярной стенки. Форменные элементы крови, липопротеиновые частицы, крупные белковые и другие молекулы в нормальных условиях через стенки капилляров сплошного тина не фильтруются. Они могут проходить через стенки фенестрированных и синусоидных капилляров.

Фильтрация воды и растворенных в ней веществ из капилляров происходит в их артериальном конце (рис. 5). Это обусловлено тем, что в начале артериальной части капилляра гидростатическое давление крови составляет 32-35 мм рт. ст., а онкотическое давление — около 25 мм рг. ст. В этой части создастся положительное фильтрационное давление + 10 мм рт. ст., под действием которого и происходит вытеснение (фильтрация) воды и растворенных в ней минеральных веществ во вне- сосудистое межклеточное пространство.

При прохождении крови через капилляр значительная часть силы давления крови затрачивается на преодоление сопротивления кровотоку и в конечной (венозной) части капилляра гидростатическое давление снижается примерно до 15- 17 мм рт. ст. Величина онкотического давления крови в венозной части капилляра остается неизменной (около 25 мм рт. ст.) и может даже несколько возрастать в результате выхода воды и некоторого повышения в крови концентрации белка. Соотношение сил, действующих на частицы крови, изменяется. Нетрудно подсчитать, что фильтрационное давление в этой части капилляра становится отрицательным и составляетвеличину около -8 мм рт. ст. Его действие направлено теперь на возврат (реабсорбцию) воды из интерстициального пространства в кровь.

Рис. 5. Схематическое представление процессов фильтрации, реабсорбции и образования лимфы в микроциркуляторном русле

Из сопоставления абсолютных значений фильтрационного давления в артериальной и венозной частях капилляра видно, что положительное фильтрационное давление на 2 мм рт. ст. превышает отрицательное. Это значит, что силы фильтрации в мнкроциркуляторном русле тканей на 2 мм рт. ст. выше, чем силы реабсорбции. Вследствие этого у здорового человека за сутки фильтруется из сосудистого русла в межклеточное пространство около 20 л жидкости, а реабсорбируется обратно в сосуды около 18 л и ее разница составляет 2 л. Эти 2 л нереабсорбировавшейся жидкости идут на образование лимфы.

При развитии острого воспаления в тканях, ожогах, аллергических реакциях, травмах может резко нарушиться баланс сил онкотического и гидростатического давлений интерстициальной жидкости. Это происходит по ряду причин: увеличивается кровоток через расширенные сосуды воспаленной ткани, повышается проницаемость сосудов под влиянием гистамина, производных арахидоповой кислоты, провоспалительных цитокипов. В интерстициальных пространствах увеличивается содержание белка за счет его большей фильтрации из крови и выхода из погибших клеток. Белок расщепляется под действием протеиназных ферментов. В межклеточной жидкости возрастают онкотическое и осмотическое давления, действие которых снижает реабсорбцию жидкости в сосудистое русло. В результате ее скопления в тканях появляется отек, а повышение тканевого гидростатического давления в области его образования становится одной из причин формирования локальной боли.

Причинами накопления жидкости в тканях и формирования отека могут быть гипоиротеинсмия, развивающаяся при длительном голодании или заболеваниях печени и ночек. В результате снижается Р крови и может резко возрасти величина положительного фильтрационного давления. Отечность тканей может развиться при повышенном артериальном давлении (гипертензии), которое сопровождается увеличением гидростатического давления в капиллярах и положительного фильтрационного давления крови.

Для оценки скорости капиллярной фильтрации используют формулу Старлинга:

где V фильтр — скорость фильтрации жидкости в микроциркуляторном русле; к — коэффициент фильтрации, величина которого зависит от свойств капиллярной стенки. Этот коэффициент отражает объем профильтровавшейся жидкости в 100 г ткани за 1 мин при фильтрационном давлении 1 мм рт. ст.

Лимфа — это жидкость, образующаяся в межклеточных пространствах тканей и оттекающая в кровь по лимфатическим сосудам. Основным источником ее образования является профильтровавшаяся из микроциркуляторного русла жидкая часть крови. В состав лимфы входят также белки, аминокислоты, глюкоза, липиды, электролиты, фрагменты разрушенных клеток, лимфоциты, одиночные моноциты и макрофаги. В нормальных условиях количество образующейся за сутки лимфы равно разнице между объемами профильтровавшейся и реабсорбированной жидкости в микроциркуляторном русле. Лимфообразование является не побочным продуктом микроциркуляции, а его неотъемлемой составной частью. Объем лимфы зависит от соотношения процессов фильтрации и реабсорбции. Факторы, ведущие к повышению фильтрационного давления и накоплению тканевой жидкости, обычно увеличивают лимфообразование. В свою очередь, нарушение опока лимфы, ведет к развитию отечности тканей. Более подробно процессы образования, состав, функции и лимфоток описаны в статье « ».

1. Микроциркуляторное русло составляют артериолы, метартериолы, капилляры, венулы.

2. Обмен осуществляется с помощью диффузии, фильтрации и реабсорбции.

3. На артериальном конце капилляра преобладают процессы фильтрации, на венозном – реабсорбции, причём процессы фильтрации преобладают над процессами реабсорбции. Средняя скорость фильтрации 20 л в сутки, реабсорбции – 18 л в сутки.

4. Фильтрация возрастает при увеличении кровяного давления, при мышечной работе, при переходе в вертикальное положение, при увеличении объёма циркулирующей крови.

5. Реабсорбция увеличивается при снижении кровяного давления, потере крови.

6. Нереабсорбированная часть плазмы удаляется из интерстициального пространства через лимфатические сосуды – около 2 л в сутки.

Выделяют три типа капилляров: 1) первый тип –сплошные капилляры (соматические ) – стенка этих капилляров образована сплошным слоем эндотелиальных клеток, в мембране которых имеются мельчайшие поры. Стенка таких капилляров мало проницаема для крупных молекул белка, но легко пропускает воду и растворенные в ней минеральные вещества. Этот тип капилляров характерен для скелетных и гладких мышц, кожи, лёгких, ЦНС, жировой и соединительной ткани; 2) второй тип –окончатые (висцеральные ) . В стенке этих капилляров имеются «окна» (фенестры ), которые могут занимать до 30% площади поверхности клеток. Такие капилляры характерны для органов, которые секретируют и всасывают большое количество воды и растворенных в ней веществ, или участвуют в быстром транспорте макромолекул: клубочки почки, слизистая оболочка кишечника, эндокринные железы; 3) третий тип – межклеточно-окончатые, несплошные капилляры (синусоидные) . Эндотелиальная оболочка этих капилляр прерывистая, клетки эндотелия расположены далеко друг от друга и благодаря этому образуются большие межклеточные пространства. Через стенку этих капилляров легко проходят макромолекулы и форменные элементы крови. Такие капилляры встречаются в костном мозге, печени и селезенки.

Механизм образования лимфы Связан с фильтрацией плазмы из кровеносных капилляров в Интерстициальное пространство, В резуль­тате чего образуется Интерстициальная (тканевая) жидкость.

Капилляроскопия - прижизненное изучение кровеносных капилляров. Для наблюдения применяется капилляроскоп с увеличением до 40-100 раз. При этом чаще всего исследуют капилляры ногтевого ложа IV пальца кисти. Кроме визуального наблюдения проводят и фотографирование, которое представляет определенные трудности. Обращают внимание на цвет и прозрачность фона, число, форму, величину капиллярных петель, соотношение венозных и артериальных браншей, динамичность изменения капилляроспокической картины, скорость кровотока. В норме наблюдается прозрачный розового цвета фон с 3-4 рядами изогнутых в форме дамской шпильки или реже в форме восьмерки каппилляров, число которых составляет около 8 в 1 мм2. Часть капилляров периодически суживается, другая расширяется, некоторые постоянно не заполняются кровью. Эта непрерывная «игра» капилляров является результатом нормального обмена веществ в тканях, а сама норма, по мнению большинства исследователей, является ориентировочной схемой, применение которой возможно лишь с учетом клинических особенностей данного наблюдения.


Сосудосуживающая иннервация представлена симпатическими нервами – это главный регуляторный механизм сосудистого тонуса. Медиатором симпатических нервов является норадреналин, который активирует α-адренорецепторы сосудов и приводит к вазоконстрикции.

Сосудорасширяющая иннервация более разнородна:

· парасимпатические нервы (медиатор ацетилхолин), ядра которых располагаются в стволе мозга, иннервируют сосуды головы. Парасимпатические нервы крестцового отдела спинного мозга иннервируют сосуды половых органов и мочевого пузыря.

· симпатические холинергические нервы иннервируют сосуды скелетных мышц. Морфологически они относятся к симпатическим, однако выделяют медиатор ацетилхолин, который вызывает сосудорасширяющий эффект.

· симпатические нервы сердца (медиатор норадреналин). Норадреналин взаимодействует с β-адренорецепторами коронарных сосудов сердца и вызывает вазодилатацию.

Сосудистый тонус - напряжение сосудистой стенки, которое создается сокращением ее гладкомышечных клеток и изменяет диаметр просвета сосудов. Изменение сосудистого тонуса - главный механизм регуляции периферического и регионального сосудистого сопротивления. К активному изменению тонуса способны сосуды мышечного типа (мелкие артерии и вены, артериолы и венулы, сфинктеры). Существует два вида сосудистого тонуса, принципиально различающихся механизмами его регуляции. Центральный (нейрогенный ) тонус регулируется вегетативной нервной системой. Иннервация сосудов в основном осуществляется симпатической нервной системой. Большинство сосудов внутренних органов, кожи содержат а-адренорецепторы. Через них осуществляется сосудосуживающее влияние нервной системы. Сосуды мозга и миокарда содержат в основном бета-адренорецепторы, через которые осуществляется сосудорасширяющее действие. Периферический (базальный) тонус - напряжение сосудистом стенки, которое сохраняется после полной денервации сосудов. Это указывает на то, что помимо нервной системы существуют другие сосудодвигательные механизмы. Базальный тонус регулируется за счет воздействия вазоактивных тканевых метаболитов, эндотелиальных факторов, биологически активных веществ и гормонов. Кроме того, важную роль играет так называемая миогенная регуляция. Миогенная регуляция сосудистого тонуса (эффект Бейлиса-Остроумова) основана на реакции гладкомышечных клеток сосудов на растяжение.

1. Рефлексы с барорецепторов сосудов: при растяжении стенки сосуда в рефлексогенных зонах дуги аорты и каротидного синуса, возбуждаются барорецепторы. Афферентные волокна идут в составе языкоглоточного нерва к сосудодвигательному центру продолговатого мозга, тормозится его прессорный отдел.

2. Частота импульсации по афферентам определяется величиной кровяного давления. Срабатывает отрицательная обратная связь: повышение давления приводит к вазодилатации (расширение сосудов) и снижению сердечного выброса.

3. Рефлексы, возникающие с рецептивных зон сердечно-сосудистой системы, называются собственные рефлексы.

4. Сопряжённые рефлексы возникают, когда в ответную реакцию вовлекаются другие органы и системы (АД повышается при болевом и температурном раздражение кожи, при растяжении мочевого пузыря, при растяжении желудка).

5. Перераспределительные рефлексы: просвет сосуда может меняться только в определённом участке, при этом общее кровяное давление не меняется (при местном нагревании или местном воздействии холода, при раздражении рецепторов ЖКТ и т.д.).

6. Рефлексы с рецепторов растяжения сердца реализуются с участием рецепторов, которые находятся в предсердиях: рецепторы А-типа возбуждаются при сокращении предсердий; рецепторы В-типа возбуждаются при растяжении предсердий при увеличении давления в полостях сердца.

7. Рефлексы с участием центральных и периферических хеморецепторов :

· периферические хеморецепторы рефлексогенных зон дуги аорты и каротидного синуса реагируют на изменение содержания О 2 и СО 2 и концентрации Н + в крови. Импульсы от хеморецепторов поступают в сосудодвигательный и дыхательный центр.

· центральные хеморецепторы возбуждаются при недостаточном кровоснабжении головного мозга, падении АД, увеличении содержания углекислого газа в крови. Рефлекторная реакция заключается в сужении сосудов и повышении АД.

8. К дополнительным механизмам регуляции давления относится изменение процессов обмена в капиллярах:

· при повышении АД в капиллярах начинают преобладать процессы фильтрации, при этом объём циркулирующй крови уменьшается, давление падает;

· при понижении АД в капиллярах преобладают процессы реабсорбции, что приводит к задержке воды в крови и препятствует дальнейшему снижению давления.

9. Ренин-ангиотензиновая система: в юкстагломерулярном аппарате почек синтезируется фермент ренин. Он высвобождается в кровь и расщепляет ангиотензиноген, при этом образуется ангиотензин I, который в сосудах лёгких превращается в ангиотензин II и является мощным вазоконстриктором.

10. Альдостерон усиливает реабсорбцию Na + и воды (увеличивая объём циркулирующей крови) и повышает чувствительность гладких мышц сосудов к сосудосуживающим веществам: адреналину и ангиотензину.

Сосудодвигательный центр - отдел продолговатого мозга, играющий ведущую роль в поддержании тонуса сосудов и рефлекторной регуляции кровяного давления; сосудодвигательный центр имеет структурные и функциональные связи с центрами ствола и коры головного мозга, гипоталамуса, мозжечка, базальными ядрами; тонус сосудодвигательного центра регулируется импульсами, поступающими от сосудистых рефлексогенных зон (дуга аорты, каротидные зоны, устье полых вен, сосуды малого круга кровообращения), хеморецепторов и ретикулярной формации.

Страница 151 из 228

Система микроциркуляции представлена тонкими сосудами диаметром менее 100 мкм и является самой резистивной частью сосудистого русла. Прекапиллярный отдел состоит из артериол и метаартериол, в которых отношение толщины сосудистых стенок к их внутреннему диаметру значительно превышает аналогичные показатели для посткапиллярного отдела, состоящего из венул. Прекапиллярный отдел создает 68 %, капилляры - 11,5 % и посткапиллярный отдел - 20,5 % общего периферического сопротивления сосудов.
Поток крови, поступающий в систему микроциркуляции, на уровне артериол делится на шунтовый и нутритивный. При помощи шунтового кровотока регулируются объем трансорганного кровотока, местное и общее гидростатическое давление крови, емкость сосудистого русла. Нутритивный кровоток обеспечивает использование кинетической энергии крови на приведение в действие фильтрационного механизма транспорта жидкости, содержащей электролиты и макромолекулы, через межэндотелиальные щели. Этот процесс регулируется внутрикапиллярным гидростатическим давлением крови, коллоидно-осмотическим давлением плазмы крови и степенью сокращений эндотелиоцитов, обладающих актомиозиновыми нитями. Одновременно осуществляется трансэндотелиальный экзоцитоз некоторых белков в интерстиций и двусторонний трансцеллюлярный транспорт воды, электролитов и органических молекул. В артериальном участке капилляров в интерстиции поступает 100 % интерстициальной жидкости, 90 % ее реабсорбируется в венозной части капилляров и 10 % всасывается в лимфатические сосуды. Белки плазмы крови, проникающие в интерстиции, возвращаются в кровеносное русло исключительно через лимфатическую систему (правило Дринкера).
Система микроциркуляции обеспечивает оптимальный уровень кровоснабжения органов и тканей при различном состоянии их функциональной активности и потребности в энергии.
У здорового человека в состоянии физиологического покоя в органах и тканях функционирует всего 1 - 10 % капилляров, которые обеспечивают оптимальный объем кровотока и потребность в энергии. При стимуляции и активации деятельности органов и тканей количество функционирующих капилляров обычно значительно возрастает и за счет увеличения объема кровотока удовлетворяются потребность их в нутриентах, кислороде и в удалении продуктов распада.
В регуляции капиллярного кровотока участвуют прекапиллярные сфинктеры, посткапиллярные венулы и артериоловенулярные анастомозы, обладающие разной чувствительностью к вазоактивным гуморальным факторам (табл. 60).
Таблица 60. Чувствительность сосудов системы микроциркуляции к нейромедиаторам и гуморальным вазоактивным факторам

Обозначения: реакция отсутствует 0; слабая реакция +; средняя реакция ++; сильная реакция +++.
Прекапиллярные мышечные сфинктеры влияют на приток крови в капилляры за счет регуляции их тонуса. При усилении симпатических влияний тонус артериол, терминальных артериол и метаартериол повышается, тонус прекапиллярных сфинктеров изменяется незначительно. При угнетении симпатических влияний и возрастании нутритивного кровотока тонус прекапиллярных сфинктеров снижается. Гистамин резко уменьшает тонус прекапиллярных сфинктеров и способствует раскрытию капилляров. Реакция протекает в двух вариантах: либо в виде уменьшения или увеличения количества функционирующих капилляров без изменения диаметра приносящих кровь артерий, либо изменения числа и размеров эндотелиальных пор. Обмен веществ между интерстициальной жидкостью и сосудистой системой осуществляется в капиллярах и посткапиллярных венулах, в которых происходит интенсивный транспорт макромолекул. Посткапиллярные венулы регулируют отток из капилляров за счет изменений их тонуса. При увеличении концентрации лактата, гистамина, аденозина, брадикинина, снижении РO2 и увеличении РСO2 посткапиллярные венулы расширяются, что облегчает отток крови из капилляров.
Артериоловенулярные анастомозы осуществляют шунтовый кровоток, участвуя в общих гемодинамических реакциях. Тонус гладких мышц анастомозов снижается при угнетении адренергических тонических влияний. При активации в тканях анаэробного гликолиза и развитии необратимых сдвигов метаболизма раскрытие артериоловенулярных анастомозов потенцирует нарушение нутритивного кровотока и способствует централизации кровообращения. Повреждение капилляров, осуществляющих нутритивный кровоток, может быть связано с дисфункцией эндотелия, дезинтеграцией межклеточного вещества, рыхлой соединительной ткани и базальной мембраны.

Функции эндотелия сосудов

Эндотелиоциты регулируют сосудистый тонус, коагуляцию крови, агрегацию тромбоцитов и лейкоцитов, высвобождение медиаторов - простациклина, фактора релаксации и др. Эндотелиоциты обладают высокой реактивностью; их синтетическая и секреторная деятельность регулируется тромбином, гистамином, брадикинином, уровнем РO2 крови, цитокинами и механическими факторами. Тромбин играет ключевую роль в гемостазе, стимуляции агрегации тромбоцитов, в образовании простациклина и активации протеина С. Интерлейкин-1 стимулирует синтез простациклина, высвобождение факторов экспрессии и тем самым регулирует фибринолитическую активность и усиливает взаимодействие между нейтрофилами и другими клетками крови и эндотелиоцитами.
В сосудах пролиферативная активность эндотелиоцитов обеспечивает физиологический ангиогенез. Процесс ангиогенеза включает освобождение ферментов, разрушающих базальную мембрану, инвазию пролиферирующих эндотелиоцитов в окружающий матрикс, новообразование сосудов и продукцию базальной мембраны - слоя специализированного внеклеточного вещества, отделяющего клетки паренхиматозного типа от соединительнотканной стромы. Матрикс постоянно обновляется, так как он разрушается протеазами (металлопротеиназами). Физиологический ангиогенез состоит в постоянном новообразовании капилляров в обновляющихся тканях (репродуктивные женские органы - фолликулогенез в яичниках, развитие миометрия; в мужских органах - дифференцировка клеток в яичках при различных функциональных состояниях; в слизистых оболочках - пролиферация эпителиоцитов). Одним из ключевых регуляторов физиологического ангиогенеза являются макрофаги, высвобождающие факторы роста (фактор роста фибробластов и др.). В зонах регенерации физиологическому ангиогенезу способствует увеличение содержания протеогликанов, особенно хондроитинсульфата и декстрансульфата.
Патологический ангиогенез - это стимулированное новообразование капилляров в зонах повреждения органов и тканей, при формировании зачатка злокачественной опухоли и др. При патологическом ангиогенезе эндотелиоциты приобретают ярко выраженную способность к инвазивному росту за счет движения клеток и деградации внеклеточного матрикса. Рост и подвижность эндотелиоцитов сочетается с резким усилением продукции ими различных протеаз - коллагеназы, активатора плазминогена и др., а также основного и кислого факторов роста фибробластов, входящих в группу гепаринсвязывающих факторов роста. Направление роста и миграция эндотелиоцитов при ангиогенезе зависят от состояния внеклеточного матрикса, образования эпидермального фактора роста (в злокачественных опухолях рост эпителиоцитов стимулируется фактором ангиогенеза). Ангиогенез лежит в основе заживления ран, ревматических заболеваний, диабетических ангиопатий и др. При повреждении сосудов в начале процесса ангиогенеза высвобождаются ангиогенные стимуляторы - факторы роста тромбоцитов, фибробластов и др. Это происходит одновременно с местной деградацией базальной мембраны под воздействием коллагеназы и активатора плазминогена, секретируемых возбужденными эндотелиоцитами. Стимуляция пролиферации эндотелиоцитов ведет к их миграции в зону тканевого дефекта. В области концов растущих капилляров активируется деление эндотелиоцитов с формированием просвета, необходимого для соединения отдельных капилляров, установления канализации и возобновления кровотока.
Синтетическая функция эндотелиоцитов направлена на выделение биологически активных веществ, поддерживающих жидкое состояние крови, тонус гладких мышц, оптимальный уровень обмена липопротеидов, синтеза жирных кислот и на инактивацию излишков брадикинина, серотонина и простагландинов. Жидкое состояние крови поддерживается за счет секреции простациклина с периодом полураспада около 3 мин, расслабляющего гладкую мышцу сосудов и ингибирующего агрегацию тромбоцитов и эритроцитов. Наряду с этим эндотелиоциты синтезируют и высвобождают 13-гидрокси-9,11-оксидекадиеновую кислоту - внутриклеточный фактор, предотвращающий налипание тромбоцитов на поверхность эндотелия. Эндотелиоциты секретируют также сильный вазодилататор - оксид азота. Его высвобождение стимулируют цитокины, ацетилхолин, эндотелиоцитзависимые вазодилататоры - адениловые пептиды, брадикинин, вещество П, АТФ, тромбин, серотонин, плазмин, арахидоновая кислота и другие ненасыщенные жирные кислоты, а также увеличение скорости кровотока. Ингибируют образование оксида азота различные антиоксиданты - витамин Е и др.
Оксид азота транспортируется в клетки в составе нитрозотиолов. Активируя гуанилатциклазу и АТФ-рибозилтрансферазу, оксид азота влияет на внутриклеточное содержание цАМФ и Са2+-ионов. Поэтому оксид азота считается вторичным посредником типа универсального регулятора клеточного метаболизма во многих органах и тканях. В артериальной системе оксид азота наряду с простациклином выступает в роли гладкомышечного релаксанта и ингибитора агрегации и адгезии тромбоцитов. Действие оксида азота на гладкие мышцы сосудов сходно с действием нитратов, применяемых при коронароспазмах.
Эндотелиоциты синтезируют и высвобождают в кровь многочисленные цитокины (табл. 61).
Синтезируемые эндотелиоцитами сосудов цитокины наряду с цитокинами моноцитов, макрофагов, лимфоцитов играют важную роль в индукции гемостаза, воспалительных, иммунных и других патологических процессов в стенках артериальных сосудов и вен. Цитокины эндотелия регулируют также гемопоэз, пролиферацию и дифференцировку Т- и В-лимфоцитов, включение лейкоцитов в воспалительную реакцию сосудов. Повышение продукции ИЛ-1 и фактора некроза опухолей оказывает провоспалительный и протромботический эффект на эндотелий сосудов.
Таблица 61. Физиологические эффекты синтезируемых эндотелиоцитами цитокинов

Эти цитокины стимулируют образование тромбопластина и уменьшают содержание антикоагулянтов на поверхности эндотелиоцитов. Они также активируют синтез фактора активации тромбоцитов и продукцию ингибитора плазменного активатора плазминогена, что снижает расщепление фибриновых сгустков. Интерлейкины-1 и 6 активируют синтез белков острой фазы в печени, стимулируют Т- и В-лимфоциты и другие виды клеток. Синтезируемый эндотелиоцитами γ-интерферон повышает в клетках экспрессию антигенов главного комплекса гистосовместимости классов 1 и 2. Гранулоцитарный, гранулоцитарно- макрофагальный колониеобразующие факторы усиливают пролиферацию и миграцию эндотелиоцитов, регулируют рост и дифференцировку гемопоэтических клеток.
Участие эндотелиоцитов в обмене липопротеидов определяется содержанием на их поверхности фермента липопротеидлипазы - чрезвычайно лабильного фактора, активирующегося при гликозилировании. Фермент чувствителен к изменениям гормонального фона, содержания других ферментов в плазме крови. Липопротеидлипаза обеспечивает каскад реакций ЛПОНП → ЛППП ЛПНП и образование подфракции ЛПВП2 в кровеносном русле. При недостаточной активности липопротеидлипазы снижается образование ЛПНП.
Эндотелиоциты метаболизируют АТФ и АДФ, высвобождаемые возбужденными тромбоцитами и другими клетками крови, при помощи мембраносвязанных АТФаз, АДФаз и 5-нуклеотидаз до аденозина, который активно захватывается эндотелиоцитами и утилизируется ими в ходе обменных процессов.
Транспортная функция эндотелия осуществляется лабильными системами, при участии которых происходит селективная и неселективная реабсорбция разных нутриентов. Адсорбционный эндоцитоз обеспечивает избирательный рецепторозависимый транспорт из крови определенных субстратов. Этим путем через эндотелий перемещаются ЛПНП, которые в субэндотелиальном пространстве проникают в фибробласты, гладкомышечные клетки, лимфоциты, где расщепляются при участии лизосом с освобождением холестерина - субстрата, используемого в синтезе липидного компонента клеточных мембран. Эндотелиоциты обладают способностью к пиноцитозу и образованию микропиноцитозных везикул, что обеспечивает связь субэндотелиального пространства с плазмой крови. Путем пиноцитоза происходит неселективная реабсорбция субстратов, содержащихся в плазме крови. Образование микропиноцитозных везикул возрастает при повышении температуры крови и ограничивается при ее понижении. При индукции микропиноцитоза из цитоплазматической мембраны клеток вытесняются поверхностно связанные ионы Са2+, участвующие в сокращении эндотелиоцитов. Транспорт ионов, аминокислот и других низкомолекулярных соединений происходит через межэндотелиальные щели, интенсивность его определяется в основном скоростью кровотока в капиллярах и в меньшей степени проницаемостью капиллярной мембраны. Прохождение высокомолекулярных соединений зависит от степени проницаемости капиллярной мембраны.
Барьерная функция эндотелия сосудов определяется количеством белковых субстанций, сосредоточенных на внешней и внутренней поверхности эндотелиоцитов и структурной организацией субэндотелия. На внешней (люминарной) поверхности эндотелия выстилка представлена сульфатированными гликозаминогликанами, играющими важную роль в регуляции проницаемости сосудистой стенки для макромолекул, белков плазмы крови и в обеспечении тромборезистентности эндотелия. Гликозаминогликаны, расположенные на поверхности эндотелия и в периваскулярном пространстве - матриксе, являются легко повреждаемыми субстратами, так как они предрасположены к энзиматической деградации. Субэндотелий, включая базальную мембрану, представляет собой слой рыхлой соединительной ткани, расположенный между капиллярами и паренхиматозными клетками. Компоненты субэндотелия синтезируются эндотелиоцитами, гладкомышечными клетками и фибробластами. Эндотелий имеет верхний, средний и глубокий слои, состоящие из различных ингредиентов. Верхний слой субэндотелия синтезируется преимущественно эндотелиоцитами. Он содержит гликопротеиновые комплексы (интегрины), участвующие в прикреплении внутренней поверхности эндотелиоцитов к белкам внеклеточного матрикса за счет распознавания и связывания рецепторами мультивалентных матричных белков и фибронектина, коллагена или ламинина. При обнажении верхнего слоя субэндотелия индуцируются более активная адгезия и агрегация тромбоцитов по сравнению с обнажением среднего и глубокого слоев. Компоненты среднего и глубокого слоев синтезируются преимущественно фибробластами и гладкомышечными клетками. Эти слои содержат многочисленные аргентофильные соединительнотканные волокна, заложенные в гелеобразном основном веществе.
У человека все функции эндотелия регулируются исключительно гуморальными механизмами, путем изменения местной концентрации вазоактивных факторов - уровня РO2, концентрации неорганического фосфата, блокирующего АТФазную активность миозина гладких мышц сосудов, а также содержания ионов Н+, К+, простагландинов, гистамина, аденозина и др. Стимуляторами сокращений эндотелиоцитов могут быть гипоксия, гемодинамические нагрузки, механические воздействия на сосудистую стенку. В то же время исключение составляют ацетилхолин, адреналин и норадреналин, которые не вызывают сокращений эндотелиоцитов. При воздействии вазоактивных веществ в течение нескольких секунд или минут эндотелиоциты изменяют форму в результате повышения содержания ионов Ca2+ в цитолемме: они округляются, околоядерная зона выпячивается в просвет сосуда, образуются складки и выросты. В цитоплазме формируются новые пучки микрофиламентов. Сокращение эндотелиоцитов вызывает расхождение межэндотелиальных контактов, образование щелей, что резко снижает барьерную функцию и способствует проникновению в субэндотелий макромолекул.
Функцию эндотелиоцитов могут нарушать различные факторы. Местное повреждение эндотелия механическими, термическими и другими факторами уже через 50 с ведет к отделению альтерированных клеток от стенки сосуда и поступлению их в кровоток с последующим уничтожением макрофагальной системой. Участок, лишенный эндотелия, усиленно адсорбирует тромбоциты и лейкоциты из крови в течение 10-30 с. Среди прилипающих лейкоцитов преобладают моноциты и в меньшей степени нейтрофилы. Адсорбированные на субэндотелии тромбоциты вначале сохраняют сферическую или дискоидную форму, затем они подвергаются вязкому метаморфозу, распластываются, образуют атромбогенный слой, дегранулируют с выделением сравнительно небольшого количества факторов роста и других биологически активных продуктов. При закрытии тромбоцитами участка обнаженного субэндотелия дальнейшее прилипание тромбоцитов и лейкоцитов из крови резко снижается. Процесс регенерации эндотелия в области дефекта начинается путем активации пролиферации и миграции эндотелиоцитов в окружающих участках, содержащих неальтерированные клетки. Вначале жизнеспособные эндотелиоциты на краях дефекта плотно прикрепляются к стенке сосуда и распластываются. Затем через 8-12 ч после деэндотелизации начинается миграция отдельных эндотелиоцитов, которые вытягиваются параллельно движению крови. У большинства эндотелиоцитов миграция предшествует началу митотического деления, которое индуцируется через 13-24 ч после травмы эндотелиальной выстилки и достигает максимума на 3-5-е сутки. Через 18-20 ч после травмы мигрирующие и делящиеся эндотелиоциты напластываются на зону дефекта со скоростью около 0,5 мм/сут. Скорость движения пласта обычно обнаруживает обратную зависимость от степени повреждения сосуда. По ходу движения крови регенерация протекает быстрее, чем в перпендикулярном направлении. При восстановлении непрерывности пласта эндотелия регенерированные участки долго сохраняют повышенную проницаемость. В артериях и венах закономерности регенерации участков с утраченным эндотелием практически одинаковы.
При опосредованных и прямых воздействиях патогенных факторов на эндотелиоциты капилляров нарушается нутритивный кровоток. Это может быть следствием снижения нагрузки на капилляры в результате спазма артериол и прекапиллярных сфинктеров либо результатом прямого повреждающего эффекта альтерирующих агентов (эндотоксины бактерий, комплексы антиген-антитело и др.) на эндотелиоциты. Острая ишемия вызывает повреждение эндотелиоцитов капилляров в виде отека клеток, протрузии цитолеммы в просвет капилляров, уменьшения в цитоплазматической мембране числа пиноцитированных микровезикул. Подобные нарушения максимально выражены при реперфузии сосудов ишемического очага, когда возникает местная сильная инфильтрация лейкоцитами капилляров и особенно посткапиллярных венул. Лейкоцитарная инфильтрация способствует потенцированию повреждений капилляров и повышению проницаемости сосудов микроциркуляции.
Для всех видов патогенных воздействий на сосуды характерно угнетение пролиферации и миграции эндотелиоцитов в участки с утраченной эндотелиальной выстилкой. Это способствует активации тромбоцитарно-сосудистого гемостаза и образованию микротромбов. Распространение микротромбоза вызывает необратимые местные повреждения клеток периишемических участков в результате грубых нарушений нутритивного кровотока. Распространению микротромбоза препятствует включение механизмов компенсации. В области, окружающей зону повреждения, раздражаются тучные клетки и базофилы, активируется фактор XII, высвобождаются вазоактивные вещества - гистамин, кинины, простагландины, ионы Н+ и др. Это ведет к выпадению тонической активности гладкомышечных клеток приносящих артериол, раскрытию прекапиллярных сфинктеров и посткапиллярных венул, расширению просвета капилляров, возрастанию числа функционирующих капилляров, увеличению внутрикапиллярного гидростатического давления и объема кровотока. Скорость фильтрации жидкой части крови в интерстициальное пространство становится большей, что ведет к увеличению лимфообразования и дренажной функции лимфатических сосудов, ускорению удаления СO2 и других продуктов метаболизма из тканей и органов. В зоне повреждения стимулируется пролиферация соединительнотканных элементов, эндотелия капилляров, усиливается синтез основного вещества и постепенно восстанавливается микроциркуляция.
При больших участках деэндотелизации сосудов на обнаженном субэндотелии прилипает большое количество тромбоцитов, моноцитов и нейтрофильных лейкоцитов, так как нарушается образование тромбоцитарного монослоя, препятствующего дополнительной адсорбции клеток крови. При вязком метаморфозе многочисленных тромбоцитов высвобождается много факторов роста и гепариназы. Эти вещества вместе с компонентами плазмы крови проникают в средние и глубокие слои субэндотелия сосудов, содержащие гладкомышечные клетки. Спустя 1-4 сут после деэндотелизации стимулируемые митогенами гладкомышечные клетки интенсивно пролиферируют. Обладая подвижностью, они мигрируют через фенестры базальной мембраны. К 7-м суткам после деэндотелизации пролиферирующие мигрирующие клетки образуют утолщения, нарушающие функцию сосудов. В области, прилегающей к зоне деэндотелизации, активируется пролиферация эндотелиоцитов, но большая часть их продолжает находиться вне утолщений в связи с медленным перемещением эндотелиального пласта на них. Постепенно эндотелиальный пласт покрывает утолщения и эндотелиальная выстилка сосуда полностью восстанавливается, при этом пролиферация гладкомышечных клеток угнетается и утолщения постепенно регрессируют. Повторные обширные деэндотелизации ведут к ослаблению процессов регенерации.
При хронической гипоксии удлиняется период адсорбции, агрегации и вязкого метаморфоза тромбоцитов на оголенном субэндотелии, усиливается пролиферация гладкомышечных элементов, ослабляется способность к миграции неповрежденных эндотелиоцитов. Это ведет к неполноценному замещению утраченных клеток и длительному сохранению повышенной проницаемости участков сосудов, где произошла регенерация эндотелия.
Тромбоцитопения обычно сопровождается ослаблением пролиферации эндотелиоцитов, так как они начинают фагоцитировать тромбоциты в недостаточном количестве и испытывать дефицит в получении трофогенов с этими клетками. Последнее ведет к развитию мелкоочаговой деэндотелизации, повышению проницаемости сосудов и предрасполагает к возникновению их заболеваний.
Дисфункция эндотелия играет важную роль в происхождении многих видов патологии органов и тканей - дыхательного дистресс-синдрома, сепсиса, атеросклероза, гипертензии, коагулопатий и др.