Какие образования составляют нервную ткань. Строение нервной ткани


Нервная ткань (textus nervosus) - совокупность клеточных элементов, формирующих органы центральной и периферической нервной системы. Обладая свойством раздражимости, нервная ткань обеспечивает получение, переработку и хранение информации из внешней и внутренней среды, регуляцию и координацию деятельности всех частей организма. В составе нервной ткани имеются две разновидности клеток: нейроны (нейроциты) и глиальные клетки (глиоциты). Первый тип клеток организует сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляет генерирование и распространение нервных импульсов. Второй тип клеток выполняет вспомогательные функции, обеспечивая жизнедеятельность нейронов. Нейроны и глиальные клетки образуют глионевральные структурно-функциональные комплексы.

Нервная ткань имеет эктодермальное происхождение. Она развивается из нервной трубки и двух ганглиозных пластинок, которые возникают из дорсальной эктодермы в процессе ее погружения (нейруляция). Из клеток нервной трубки образуется нервная ткань, формирующая органы ц.н.с. - головной и спинной мозг с их эфферентными нервами, из ганглиозных пластинок - нервная ткань различных частей периферической нервной системы. Клетки нервной трубки и ганглиозной пластинки по мере деления и миграции дифференцируются в двух направлениях: одни из них становятся крупными отростчатыми (нейробласты) и превращаются в нейроциты, другие остаются мелкими (спонгиобласты) и развиваются в глиоциты.

Основу нервной ткани составляют нейроны. Вспомогательные клетки нервной ткани (глиоциты) различают по структурно-функциональным особенностям. В центральной нервной системе имеются следующие виды глиоцитов: эпендимоциты, астроциты, олигодендроциты; в периферической - глиоциты ганглиев, концевые глиоциты и нейролеммоциты (шванновские клетки). Эпендимоциты образуют эпендиму - покровный слой, выстилающий полости мозговых желудочков и центральный канал спинного мозга. Эти клетки имеют отношение к метаболизму и секреции некоторых компонентов цереброспинальной жидкости.

Нервная клетка, или нейрон, характеризуется способностью воспринимать раздражения, приходить в состояние возбуждения и передавать его другим клеткам организма. Благодаря этому осуществляется взаимосвязь органов и тканей, регуляции всех функций организма и приспособление его к окружающей среде.

Нервные клетки имеют различную форму и величину и состоят из тела и отростков.

Отростки нервной клетки делятся на два типа:

· Нейриты , или аксоны, по которым возбуждение (импульс) передается от тела клетки на периферию. Аксон всегда один отходит от клетки и заканчивается концевым аппаратом в рабочем органе или на другом нейроне.

· Дендриты - отростки по которым с периферии к телу клетки передается импульс. Их много и они ветвятся.

По количеству отростков нервные клетки делятся на три типа:

· Униполярные – клетки с одним отростком. У человека не обнаружены.

· Биполярные – имеют один нейрит в ЦНС и один дендрит, идущий на периферию. Находятся в спинальных нервных узлах.

· Мультиполярные – имеют один нейрит и много дендритов. Их у человека больше всего.

Ядро нервной клетки имеет округлую форму и находится в центре.

В цитоплазме нейронов имеются нейрофибриллы, представляющие собой тонкие нити. В теле нервной клетки они образуют густую сеть. В отростках нейрофибриллы располагаются параллельно друг другу.

Нейроглия представлена клетками различной формы с большим количеством отростков. Этих клеток больше, чем нервных.

Нервные волокна. Отростки нервных клеток с оболочками называются нервными волокнами. Различают миелиновые (мякотные) и безмиелиновые (безмякотные). Отростки находятся в центре нервного волокна и называются осевым цилиндром, который покрыт оболочкой, образованной клетками нейроглии (леммоцитами).

Безмиелиновые волокна представляют собой осевой цилиндр, покрытый только оболочкой из леммоцитов.

Миелиновые – значительно толще. Они тоже состоят из осевого цилиндра, но имеют два слоя оболочки: внутренний, более толстый – миелиновый, и наружный, тонкий, состоящий из леммоцитов. Снаружи миелиновое волокно покрыто тонкой соединительнотканной оболочкой – неврилеммой.

Нервные окончания. Все нервные волокна заканчиваются нервными окончаниями. Различают три группы:

· Эфферентные . Могут быть двух типов: двигательные и секреторные. Двигательные окончания это концевые аппараты аксонов соматической и вегетативной нервной системы.

· Чувствительные (рецепторы) – это концевые аппараты дендритов чувствительных нейронов. Делятся на свободные, состоящие из разветвления осевого цилиндра, и несвободные, содержащие все компоненты нервного волокна, покрытые капсулой.

· Концевые отростки, образующие межнейронные синапсы, осуществляющие связь нейронов между собой.

 Нервная ткань (textus nervosus) - совокупность клеточных элементов, формирующих органы центральной и периферической нервной системы. Обладая свойством раздражимости, нервная ткань обеспечивает получение, переработку и хранение информации из внешней и внутренней среды, регуляцию и координацию деятельности всех частей организма. В составе нервной ткани имеются две разновидности клеток: нейроны (нейроциты) и глиальные клетки (глиоциты). Первый тип клеток организует сложные рефлекторные системы посредством разнообразных контактов друг с другом и осуществляет генерирование и распространение нервных импульсов. Второй тип клеток выполняет вспомогательные функции, обеспечивая жизнедеятельность нейронов. Нейроны и глиальные клетки образуют глионевральные структурно-функциональные комплексы.

Нервная ткань имеет эктодермальное происхождение. Она развивается из нервной трубки и двух ганглиозных пластинок, которые возникают из дорсальной эктодермы в процессе ее погружения (нейруляция).
Из клеток нервной трубки образуется нервная ткань, формирующая органы ц.н.с. - головной и спинной мозг с их эфферентными нервами, из ганглиозных пластинок - нервная ткань различных частей периферической нервной системы. Клетки нервной трубки и ганглиозной пластинки по мере деления и миграции дифференцируются в двух направлениях: одни из них становятся крупными отростчатыми (нейробласты) и превращаются в нейроциты, другие остаются мелкими (спонгиобласты) и развиваются в глиоциты.

Основу нервной ткани составляют нейроны. Вспомогательные клетки нервной ткани (глиоциты) различают по структурно-функциональным особенностям. В центральной нервной системе имеются следующие виды глиоцитов: эпендимоциты, астроциты, олигодендроциты; в периферической - глиоциты ганглиев, концевые глиоциты и нейролеммоциты (шванновские клетки). Эпендимоциты образуют эпендиму - покровный слой, выстилающий полости мозговых желудочков и центральный канал спинного мозга. Эти клетки имеют отношение к метаболизму и секреции некоторых компонентов цереброспинальной жидкости.

Астроциты входят в состав ткани серого и белого вещества головного и спинного мозга; имеют звездчатую форму, многочисленные отростки, распластанные терминали которых участвуют в создании глиозных мембран.
На поверхности мозга и под эпендимой они формируют наружную и внутреннюю пограничные глиозные мембраны. Вокруг всех кровеносных сосудов, проходящих в мозговой ткани, астроциты образуют периваскулярную глиозную мембрану. Вместе с компонентами самой стенки кровеносного сосуда эта глиозная мембрана создает гематоэнцефалический барьер - структурно-функциональную границу между кровью и нервной тканью.

Олигодендроциты в сером веществе мозга являются клетками-саттелитами нейронов; в белом веществе они образуют оболочки вокруг их аксонов. Клетки периферической глии создают барьеры вокруг нейронов периферической нервной системы. Глиоциты ганглиев (клетки-сателлиты) окружают их перикарион, а нейролеммоциты сопровождают отростки и участвуют в образовании нервных волокон.

Нервные волокна - пути распространения нервного импульса; они формируют белое вещество головного и спинного мозга и периферические нервы. В нервном волокне имеются центральная часть, образоваиная аксоном нервной клетки, и периферическая - оболочечные глиальные клетки, или леммоциты.
В ц.н.с. роль леммоцитов играют олигодендроциты, а в периферической нервной системе - нейролеммоциты. Аксон нервного волокна как часть нервной клетки имеет наружную мембрану (аксолемму) и содержит органеллы: нейрофиламенты, микротрубочки, а также митохондрии, лизосомы, незернистую эндоплазматическую сеть. По аксону от тела нейрона осуществляется аксонный транспорт белков органелл. В аксонном транспорте различают медленный поток (со скоростью около 1 мм в сутки), обеспечивающий рост аксонов, и быстрый поток (около 100 мм в сутки), имеющий отношение к синаптической функции. Транспортные процессы в осевом цилиндре связывают с системой микротрубочек.

В зависимости от способа организации оболочки вокруг аксона различают миелиновые (мякотные) и безмиелиновые (безмякотные) нервные волокна. В последних аксон погружен в цитоплазму леммоцита, поэтому окружен только его двойной цитомембраной. Безмякотные волокна тонкие (0,3-1,5 мкм), характеризуются низкой скоростью проведения импульса (0,5-2,5 м/с).
Такие волокна типичны для вегетативной нервной системы. В миелиновых (мякотных) нервных волокнах цитомембрана леммоцита вследствие многократного закручивания вокруг аксона (миелогенез) образует многослойную структуру из чередующихся билипидных и гликопротеиновых слоев. Этот слоистый, богатый липидами материал называется миелином. Миелиновые нервные волокна различаются по толщине миелиновой оболочки (от 1 до 20 мкм), что влияет на скорость распространения импульса (от 3 до 120 м/с). Миелиновое покрытие по длине волокна имеет сегментарное строение, зависящее от протяженности леммоцита (от 0,2 до 1,5 мкм). На границе двух леммоцитов имеются участки безмиелиновых перетяжек - узлы нервного волокна (перехваты Ранвье). Поэтому распространение импульса в миелиновых волокнах носит сальтаторный (скачкообразный) характер. Миелиновые волокна типичны для соматических нервов, а также проводящих путей головного и спинного мозга. Ведущее значение аксона как части нейрона в структурно-функциональной организации нервного волокна проявляется при его повреждении. Если погибает даже небольшой участок, то нервное волокно гибнет на всем его дальнейшем протяжении, т.к. оказывается отделенным от тела клетки, от которого зависит его существование. Гибель дистального участка аксона сопровождается дегенерацией и распадом его миелиновой оболочки (валлеровское перерождение). При этом макрофаги поглощают распадающийся миелин и остатки аксона, а затем удаляются из очага. Дальнейший процесс восстановления связан с реакцией нейролеммоцитов, которые начинают пролиферировать с проксимального конца поврежденного нервного волокна, образуя трубки. Аксоны врастают в эти трубки со скоростью 1-3 мм в сутки. Этот процесс характерен для периферических нервов после их сдавления и перерезки.

Межнейронная связь осуществляется через их отростки с помощью межклеточных контактов - синапсов.

Нервные волокна оканчиваются не только на нейронах, но и на клетках всех других тканей, особенно мышечных и эпителиальных, образуя эфферентные нервные окончания, или нейроэффекторные синапсы. Особенно многочисленными и сложно развитыми являются двигательные нервные окончания на поперечнополосатой мускулатуре - моторные бляшки.

Воспринимающие (рецепторные) нервные окончания - концевые аппараты дендритов чувствительных нейронов - генерируют нервный импульс под влиянием различных раздражителей из внешней и внутренней среды. По своим структурным особенностям рецепторные нервные окончания могут быть «свободными», т.е. расположенными непосредственно между клетками иннервируемой ткани; «несвободными» и даже инкапсулированными, т.с. окруженными специальными рецепторными клетками эпителиального или глиального характера, а также соединительнотканной капсулой.

Нервная ткань образует нервную систему, которая делится на два отдела: центральный (включает в себя головной и спинной мозг) и периферический (состоит из нервов и периферических нервных узлов). Единую систему нервов также условно подразделяют на соматическую и вегетативную. Часть выполняемых нами действий находится под произвольным контролем. Соматическая нервная система является сознательно управляемой системой. Она передает импульсы, исходящие от органов чувств, мышц, суставов и чувствительных окончаний, в центральную нервную систему, передает сигналы головного мозга в органы чувств, мышцы, суставы и кожу. Вегетативная нервная система практически не контролируется сознанием. Она регулирует работу внутренних органов, кровеносных сосудов и желез.

Строение

Основные элементы нервной ткани - нейроны (нервные клетки). Нейрон состоит из тела и отходящих от него отростков. Большинство нервных клеток имеет несколько коротких и один или пару длинных отростков. Короткие, древовидно ветвящиеся отростки, называются дендритами. Их окончания получают нервный импульс от других нейронов. Длинный отросток нейрона, проводящий нервные импульсы от тела клетки к иннервируемым органам, называется аксоном. Самым крупным у человека является седалищный нерв. Его нервные волокна простираются от поясничного отдела позвоночника до стоп. Некоторые аксоны покрыты многослойным жиросодержащим образованием, называемым миелиновой оболочкой. Эти вещества образуют белое вещество головного и спинного мозга. Волокна, не покрытые миелиновой оболочкой, имеют серый цвет. Нерв сформирован из большого числа нервных волокон, заключенных в общую соединительнотканную оболочку. От спинного мозга отходят волокна, обслуживающие различные части тела. По всей длине спинного мозга расположена 31 пара этих волокон.

Сколько нейронов в организме человека?

Нервная ткань человека образована примерно 25 миллиардами нервных клеток и их отростков. Каждая клетка имеет крупное ядро. Каждый нейрон соединяется с другими нейронами, образуя таким образом гигантскую сеть. Передача импульса от одного нейрона другому происходит в синапсах - зонах контакта между оболочками двух нервных клеток. Передача возбуждения обеспечивается особыми химическими веществами - нейромедиаторами. Передающая клетка синтезирует нейромедиатор и выделяет его в синапс, а приемная клетка улавливает этот химический сигнал и превращает его в электрические импульсы. С возрастом могут образоваться новые синапсы, в то время, как образование новых нейронов невозможно.

Функции

Нервная система осуществляет восприятие, передачу и обработку информации. Нейроны передают информацию, создавая электрический потенциал, либо выделяя особые химические вещества. Нервы реагируют на механическое, химическое, электрическое и термическое раздражение. Для того, чтобы произошло раздражение соответствующего нерва, действие раздражителя должно быть достаточно сильным и продолжительным. В состоянии покоя существует разница в электрическом потенциале на внутренней и внешней сторонах клеточной мембраны. Под действием раздражителей происходит деполяризация - ионы натрия, находящиеся вне клетки, начинают продвигаться внутрь клетки. После окончания периода возбуждения клеточная мембрана вновь становится менее проницаемой для ионов натрия. Импульс распространяется по соматической нервной системе со скоростью 40-100 м в секунду. Между тем, по вегетативной НС возбуждение передается со скоростью примерно 1 метр в секунду.

Нервная система вырабатывает эндогенные морфины, которые оказывают болеутоляющее действие на организм человека. Они, аналогично искусственно синтезированному морфию, действуют в области синапсов. Эти вещества, выполняя функцию нейромедиаторов, блокируют передачу возбуждения нейронам.

Суточная потребность нейронов головного мозга в глюкозе составляет 80 г. Они усваивают около 18% кислорода, поступающего в организм. Даже кратковременное нарушение кислородного обмена ведет к необратимому поражению мозга.

Типы тканей

Ткань - это группа клеток и межклеточное вещество, объединенные общим строением, функцией и происхождением. В теле человека различают четыре основных типа тканей: эпителиальную (покровную), соединительную, мышечную» нервную. Эпителиальная ткань образует покровы тела, железы, выстилает полости внутренних органов. Клетки ткани близко прилегают друг к другу, межклеточного вещества мало. Соз-

дается препятствие для проникновения микробов, вредных веществ, защита лежащих под эпителием тканей. Смена клеток происходит благодаря способности к быстрому размножению.

Соединительная ткань. Ее особенность - сильное развитие межклеточного вещества. Основные функции ткани - питательная и опорная. К соединительной ткани относятся кровь, лимфа, хрящевая, костная, жировая ткани. Кровь и лимфа состоят из жидкого межклеточного вещества и клеток крови. Эти ткани обеспечивают связь между органами, перенося вещества и газы. Волокнистая соединительная ткань состоит из клеток,

связанных межклеточным веществом в виде волокон. Волокна могут лежать плотно и рыхло. Волокнистая соединительная ткань имеется во всех органах.

В хрящевой ткани клетки крупные, межклеточное вещество упругое, плотное, содержит эластичные волокна.

Костная ткань состоит из костных пластинок, внутри которых лежат клетки. Клетки соединены друг с другом многочисленными тонкими отростками. Ткань отличается твердостью.

Мышечная ткань образована мышечными волокнами. В их цитоплазме находятся нити, способные к сокращению. Выделяют гладкую и поперечно-полосатую мышечную ткань. Гладкая мышечная ткань входит в состав стенок внутренних органов (желудок, кишки, мочевой пузырь, кровеносные сосуды). Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Скелетная состоит из волокон вытяну

той формы, достигающих в длину 10-12 см. Сердечная мышечная ткань, так же как и скелетная, имеет поперечную исчерченность. Однако, в отличие от скелетной, здесь есть специальные участки, где мышечные волокна плотно смыкаются. Благодаря такому строению сокращение одного волокна быстро передается соседним. Это обеспечивает одновременность сокращения больших участков сердечной мышцы. За счет гладких мышц происходит сокращение внутренних органов и изменение диаметров кровеносных сосудов. Сокращение скелетных мышц обеспечивает движение тела в пространстве и перемещение одних частей по отношению к другим.

Нервная ткань. Структурной единицей нервной ткани является нервная клетка - нейрон. Нейрон состоит из тела и отростков. Основные свойства нейрона - способность возбуждаться и проводить это возбуждение по нервным волокнам. Нервная ткань составляет головной и спинной мозг, обеспечивает объединение функций всех частей организма.

Различные ткани соединяются между собой и образуют органы.

9.3.4. Нервные ткани

Нервная ткань состоит из нервных клеток – нейронов и клеток нейроглии. Кроме того, она содержит рецепторные клетки. Нервные клетки могут возбуждаться и передавать электрические импульсы.

Нейроны состоят из тела клетки диаметром 3–100 мкм, содержащего ядро и органоиды, и цитоплазматических отростков. Короткие отростки, проводящие импульсы к телу клетки, называются дендритами ; более длинные (до нескольких метров) и тонкие отростки, проводящие импульсы от тела клетки к другим клеткам, называются аксонами . Аксоны соединяются с соседними нейронами в синапсах.


Нейроны, передающие импульсы к эффекторам (органам, отвечающим на раздражения), называют моторными; нейроны, передающие импульсы в центральную нервную систему, называют сенсорными. Иногда сенсорные и моторные нейроны связаны между собой при помощи вставочных (промежуточных) нейронов.

Рисунок 9.3.4.4.

Строение сенсорного и моторного нервов.

Пучки нервных волокон собраны в нервы . Нервы покрыты оболочкой из соединительной ткани – эпиневрием . Собственная оболочка покрывает и каждое волокно в отдельности. Как и нейроны, нервы бывают сенсорными (афферентными) и моторными (эфферентными). Встречаются также смешанные нервы, передающие импульсы в обоих направлениях. Нервные волокна целиком или полностью окружены шванновскими клетками . Между миелиновыми оболочками шванновских клеток имеются разрывы, называемые перехватами Ранвье .

Клетки нейроглии сосредоточены в центральной нервной системе, где их количество в десять раз превышает количество нейронов. Они заполняют пространство между нейронами, обеспечивая их питательными веществами. Возможно, клетки нейролгии участвуют в сохранении информации в форме РНК-кодов. При повреждении клетки нейролгии активно делятся, образуя на месте повреждения рубец; клетки нейролгии другого типа превращаются в фагоциты и защищают организм от вирусов и бактерий.

Сигналы передаются по нервным клеткам в виде электрических импульсов. Электрофизиологические исследования показали, что мембрана аксона с внутренней стороны заряжена отрицательно по отношению к наружной стороне, и разность потенциалов составляет примерно –65 мВ. Этот потенциал, так называемый потенциал покоя , обусловлен разностью концентраций ионов калия и натрия по разные стороны мембраны.

При стимуляции аксона электрическим током потенциал на внутренней стороне мембраны увеличивается до +40 мВ. Потенциал действия возникает за счет кратковременного увеличения проницаемости мембраны аксона для ионов натрия и входа последних в аксон (около 10 –6 % от общего числа ионов Na + в клетке). Примерно через 0,5 мс повышается проницаемость мембраны для ионов калия; они выходят из аксона, восстанавливая исходный потенциал.

Нервные импульсы пробегают по аксонам в виде незатухающей волны деполяризации. В течение 1 мс после импульса аксон возвращается в исходное состояние и не способен передавать импульсы. Ещё в течение 5–10 мс аксон может передавать только сильные импульсы. Скорость проведения сигнала зависит от толщины аксона: в тонких аксонах (до 0,1 мм) она составляет 0,5 м/с, в то время, как в гигантских аксонах кальмаров диаметром 1 мм может достигать 100 м/с. У позвоночных друг за другом возбуждаются не соседние участки аксона, а перехваты Ранвье; импульс перескакивает от одного перехвата к другому и идёт в целом быстрее (до 120 м/с), чем серия коротких токов по немиелиновому волокну. Повышение температуры увеличивает скорость прохождения нервных импульсов.

Амплитуда нервных импульсов не может изменяться, и для кодирования инфомации используется только их частота. Чем больше воздействующая сила, тем чаще следуют друг за другом импульсы.

Передача информации от одного нейрона к другому происходит в синапсах . Обычно посредством синапсов связаны между собой аксон одного нейрона и дендриты или тело другого. Синапсами связаны с нейронами также окончания мышечных волокон. Число синапсов очень велико: некоторые клетки головного мозга могут иметь до 10 000 синапсов.

По большинству синапсов сигнал передаётся химическим путём. Нервные окончания разделены между собой синаптической щелью шириной около 20 нм. Нервные окончания имеют утолщения, называемые синаптическими бляшками ; цитоплазма этих утолщений содержит многочисленные синаптические пузырьки диаметром около 50 нм, внутри которых находится медиатор – вещество, с помощью которого нервный сигнал передаётся через синапс. Прибытие нервного импульса вызывает слияние пузырька с мембраной и выход медиатора из клетки. Примерно через 0,5 мс молекулы медиатора попадают на мембрану второй нервной клетки, где связываются с молекулами рецептора и передают сигнал дальше.


Передача информации в химических синапсах происходит в одном направлении. Специальный механизм суммации позволяет отфильтровывать слабые фоновые импульсы, прежде чем они поступят, например, в мозг. Передача импульсов может также затормаживаться (например, в результате воздействия на синапс сигналов, приходящих от других нейронов). Некоторые химические вещества влияют на синапсы, вызывая ту или иную реакцию. После непрерывной работы запасы медиатора истощаются, и синапс временно перестаёт передавать сигнал.

Через некоторые синапсы передача происходит электрическим путём: ширина синаптической щели составляет всего 2 нм, и импульсы проходят через синапсы без задержки.

Мышечная ткань состоит из высокоспециализированных сократительных волокон. В организмах высших животных она составляет до 40 % массы тела.

Различают три типа мышц. Поперечно-полосатые (их также называют скелетными) мышцы являются основой двигательной системы организма. Очень длинные многоядерные клетки-волокна связаны друг с другом соединительной тканью, содержащей в себе множество кровеносных сосудов. Данный тип мышц отличают мощные и быстрые сокращения; в сочетании с коротким рефрактерным периодом это приводит к быстрой утомляемости. Активность поперечно-полосатых мышц определяется деятельностью головного и спинного мозга.

Гладкие (непроизвольные) мышцы образуют стенки дыхательных путей, кровеносных сосудов, пищеварительной и мочеполовой систем. Их отличают относительно медленные ритмичные сокращения; активность зависит от автономной нервной системы. Одноядерные клетки гладких мышц собраны в пучки или пласты.

Наконец, клетки сердечной мышцы разветвляются на концах и соединяются между собой при помощи поверхностных отростков – вставочных дисков. Клетки содержат несколько ядер и большое количество крупных митохондрий . Как следует из названия, сердечная мышца встречается только в стенке сердца.

Нервная ткань состоит из двух родов клеток: основных - нейронов и поддерживающих, или вспомогательных, - нейроглии. Нейроны представляют собой высокодифференцированные клетки, имеющие сходство, но весьма разнообразного строения в зависимости от местоположения и функции. Их сходство заключается в том, что тело нейрона (от 4 до 130 мкм) имеет ядро и органоиды, оно покрыто тонкой перепонкой - мембраной, от него отходят отростки: короткие - дендриты и длинный - нейрит, или аксон. У взрослого человека длина аксона может доходить до 1 -1,5 м, толщина его меньше 0,025 мм. Аксон покрыт клетками нейроглии, образующими соединительнотканую оболочку, и шванновскими клетками, которые облегают аксон, подобно футляру, составляя его мякотную, или миелиновую, оболочку; эти клетки не относятся к нервным.

Каждый отрезок, или сегмент, мякотной оболочки образован отдельной шванповской клеткой, содержащей ядро, и отделен от другого сегмента перехватом Ранвье. Миелиновая оболочка обеспечивает и улучшает изолированное проведение нервных импульсов по аксонам и участвует в обмене веществ аксона. В перехватах Ранвье при прохождении нервного импульса происходит усиление биопотенциалов. Часть безмякотных нервных волокон окружена шванновскими клетками, не содержащими миелина.

Рис. 21. Схема строения нейрона под электронным микроскопом:
BE - вакуоли; ВВ - впячивание ядерных мембран; ВН - вещество Ниссля; Г - аппарат Гольджи; ГГ - гранулы гликогена; КГ - канальцы аппарата Гольджи; JI - лизосомы; ЛГ - липидные гранулы; М - митохондрии; МЭ - мембраны эндоплазматическопо ретикулума; Н - нейропротофибриллы; П - полисомы; ПМ - плазматическая мембрана; ПР - пре-синаптическая мембрана; ПС - постсинаптическая мембрана; ПЯ - поры ядерной мембраны; Р - рибосомы; РНП - рибо-нуклеопротеидные гранулы; С - синапс; СП - синаптические пузырьки; ЦЭ - цистерны эндоплазматического ретикулума; ЭР - эндоплазматический ретикулум; Я - ядро; ЯД - ядрышко; ЯМ - ядерная мембрана

Основными свойствами нервной ткани являются возбудимость и проводимость нервных импульсов, которые распространяются по нервным волокнам с разной скоростью в зависимости от их строения и функции.

По функции различаются афферентные (центростремительные, чувствительные) волокна, проводящие импульсы из рецепторов в центральную нервную систему, и эфферентные (центробежные) волокна, проводящие импульсы из центральной нервной системы в органы тела. Центробежные волокна в свою очередь делятся на двигательные, проводящие импульсы к мышцам, и секреторные, проводящие импульсы к железам.

Рис. 22. Схема нейрона. А - рецепторный нейрон; Б - двигательный нейрон
/ -дендриты, 2 - синапсы, 3 - нейрилемма, 4 - миелиновая оболочка, 5 - нейрит, 6 - мионевральный аппарат
По строению различают толстые мякотные волокна диаметром 4-20 мкм (к ним относятся двигательные волокна скелетной мускулатуры и афферентные волокна от рецепторов осязания, давления и мышечно-суставной чувствительности), тонкие миелиновые волокна диаметром меньше 3 мкм (афферентные волокна и проводящие импульсы к внутренним органам), очень тонкие миелиновые волокна (болевой и температурной чувствительности) - меньше 2 мкм и безмякотные - 1 мкм.


В афферентных волокнах человека возбуждение проводится со скоростью от 0,5 до 50-70 м/сек, в эфферентных - до 140-160 м/сек. Толстые волокна быстрее проводят возбуждение, чем тонкие.

Рис. 23. Схемы разных синапсов. А - типы синапсов; Б - шипиковый аппарат; В - субсинаптический мешочек и кольцо из нейрофибрилл:
1 - синаптические пузырьки, 2 - митохондрия, 3 - сложный пузырек, 4 - дендрит, 5 - трубочка, 6 - шипик, 7 - шипиковый аппарат, 8 - кольцо из нейрофибрилл, 9 - субсинаптический мешочек, 10 - эндоплазматическая сеть, 11 - постсинаптический шипик, 12 - ядро

Нейроны связаны друг с другом посредством контактов - синапсов, которые отделяют друг от друга тела нейронов, аксон и дендриты. Количество синапсов на теле одного нейрона достигает 100 и больше, а на дендритах одного нейрона - нескольких тысяч.

Синапс имеет сложное строение. Он состоит из двух мембран - пресинаптической и постсинаптической (толщина каждой 5-6 нм), между которыми есть синаптическая щель, пространство (в среднем 20 нм). Через отверстия в пресинаптической мембране цитоплазма аксона или дендрита сообщается с синаптическим пространством. Кроме того, есть синапсы между аксонами и клетками органа, которые имеют сходное строение.

Деление нейронов у людей до настоящего времени твердо не установлено, хотя имеются доказательства размножения нейронов головного мозга у щенков. Доказано, что тело нейрона осуществляет функцию питательного (трофического) центра для своих отростков, так как уже через несколько дней после перерезки нерва, состоящего из нервных волокон, начинается врастание из тел нейронов в периферический отрезок нерва новых нервных волокон. Скорость врастания - 0,3-1 мм в сутки.