Строение и функции слуховой сенсорной системы. Слуховая сенсорная система и ее значение и строение

Тема. Строение слуховой сенсорной системы

Вопросы:

1. Периферический отдел слуховой системы: строение внешнего, среднего и внутреннего уха.

2. Ход проводящих путей слуховой сенсорной системы.

3. Корковый отдел.

Слуховая сенсорная система состоит из 3 отделов: периферирический, проводниковый, корковый.

Строение периферического отдела

Периферический отдел представлен наружным, средним, внутренним ухом (рисунок 1).

Рисунок 1. Строение уха

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

1. Ушная раковина состоит из эластического хряща, покрытого кожей. Особенно кожный этот хрящ у ребёнка, поэтому даже незначительные удары по уху могут привести к образованию гематомы, с последующим её нагноением и деформации раковины. Хрящ имеет множество завитков и углублений - это связано с его защитной функцией. Ухо имеет воронкообразную форму, которая способствует улавливанию звуков и локализацию их в пространстве. В нижней части ушной раковины хрящ отсутствует - точка уха. Она состоит целиком из жировой клетчатки. Величина ушной раковины, её форма, уровень прикрепления к голове у каждого человека индивидуально (наследуется генетически). Однако отлично характерное строение ушной раковины у детей (наследственными заболеваниями, болезнь Дауна). Ушная раковина прикрепляется к голове при помощи мышц и связок, причём мышцы, двигающие ушную раковину, носят рудиментарный характер (недоразвиты).

2. Наружный слуховой проход начинается углублением в центре ушной раковины и направлен вглубь височной кости, заканчивается барабанной перепонкой. Т.о. барабанная перепонка не относится ни к наружному, ни к среднему уху, а лишь отделяет их. У взрослых наружный слуховой проход имеет длину 2,5-3 см. У детей он короче из-за недоразвития костного отдела. У новорождённого слуховой проход имеет вид щели и заполнен слущившимися эпителиальными клетками. Только к 3месяцам этот проход полностью очищается. Наружное ухо по своим параметрам приближается к уху взрослого = 12 годам. Его просвет становится овальным, и диаметр составляет 0,7-1см. Нормальный слуховой проход состоит из 2 частей:



Наружная часть (перепончато-хрящевая) - является продолжением ушного хряща.

Внутренняя часть (костная) - в плотную подходит к барабанной перепонке. Особенностью строения является то, что, самый узкий участок наружного прохода расположен вместе перехода одной части в другую. Поэтому, именно здесь излюбленное место образования серной пробки. В коже наружного слухового прохода имеются волоски и серные железы, которые продуцируют серу.

Причина образования серной пробки:

1. избыточное продукция серы;

2. изменеие свойств серы (повышенная вязкость);

3. анатомическая (врожденная) узость и изогнутость наружного слухового прохода.

Наружный слуховой проход имеет 4 стенки. Его передняя стенка прилегает к головке нижнечелюстного сустава, поэтому при ударах по подбородку происходит травматизация головкой нижнечелюстного сустава наружного слухового прохода и кровотечения.

Барабанная перепонка отделяет наружное ухо от среднего. Представляет собой тонкую, но эластичную мембрану толщиной 0,1 мм., диаметр 0,8-1см. Барабанная перепонка имеет 3 слоя:

1. кожный (эпидермальный);

2. соединительнотканный;

3. слизистый.

Первый слой является продолжением кожи наружного слухового прохода. Второй слой состоит из густо переплетенных циркулярных и радиальных волокон. Третий слой является продолжением слизистой оболочки барабанной полости.

К центру барабанной перепонки прикрепляется рукоятка молоточка. Это место называется пупок. Барабанная перепонка имеет 3 слоя только в наружной части. Во второй её части расслабленной она имеет только 2 слоя без среднего. Осмотр барабанной перепонки называется отоскопия. При осмотре здоровая перепонка имеет перламутрово-белый цвет, форму конуса, выпуклостью обращённой внутрь, т.е. в ухо.

Рисунок 2. Строение барабанной перепонки

Среднее ухо состоит из:

Барабанной полости, в ней находятся слуховые косточки, слуховые мышцы и евстахиевы трубы;

Ячейки воздухоносного сосцевидного отростка;

Барабанная полость имеет вид шестигранника:

а/ верхняя стенка барабанной полости - крыша. У маленьких детей она имеет отверстие. Поэтому очень часто у детей гнойные отиты осложняются прорывом гноя на мозговые оболочки (гнойный менингит);

б/ нижняя стенка - дно, имеет отверстие, что может приводить к прорыву инфекции в кровь, в кровеносные русла. Так как нижняя стенка расположена над луковицей яремной вены. Это может привести к осложнению (сепсис онтогенный);

в/ передняя стенка. На передней стенке расположены отверстия - вход в евстахиеву трубу;

г/ задняя стенка. На ней расположен вход в пещеру сосцевидного отростка. Задней стеной барабанной полости является костная пластинка, которая отделяет средне ухо от внутреннего. На ней имеются 2 отверстия: одно из них называют овальное и круглое окно. Овальное окно закрыто стременем. Круглое прикрыто вторичной барабанной перепонкой. В области задней стенки проходит костный канал лицевого нерва. При воспалении среднего уха инфекция может переходить на этот нерв, вызывая неврит лицевого нерва, и как следствие перекосы лица.

Слуховые косточки соединены в определённой последовательности:

Молоточки;

Наковальня;

Рисунок 3. Строение слуховых косточек

Рукоятка молоточка соединяется с центром барабанной перепонки. Головка молоточка соединяется с помощью сустава с телом наковальни. Подножная пластинка стремени вставляется в овальное окно, которое расположено на костной стенке внутреннего уха. Т.о. колебания барабанной перепонки через систему слуховых косточек передаются на внутреннее ухо. Слуховые косточки подвешены в барабанной полости при помощи связок. В полости среднего уха есть слуховые мышцы (их 2):

Мышца, натягивающая барабанную перепонку. Она принадлежит защитной функции. Она предохраняет барабанную перепонку от повреждения при действии сильных раздражителей. Это связано с тем, что при сокращении этой мышцы движение барабанной перепонки ограничено.

Мышца стременная. Она отвечает за подвижность стремени в овальном окне, что имеет большое значение для проведения звуков во внутреннее ухо. Установлено, что при блокаде овального окна развивается глухота.

Слуховая «евстахиева» труба. Это парное образование, которое соединяет носоглотку и полость среднего уха. Вход в евстахиеву трубу расположен на задней стенке барабанной полости. Евстахиева труба состоит из 2 отделов:

Костного 1/3 трубы;

Перепончатого 2/3 трубы.

Костный отдел сообщается с барабанной полостью, а перепончатый - носоглоткой.

Длина слуховой трубы у взрослого человека = 2,5см, диаметр = 2-3мм. У детей она короче и шире чем у взрослого. Это связано с недоразвитием костной кости слуховой трубы. Поэтому у детей инфекция может легко переходить из барабанной перепонки на слизистую слуховой трубы и носоглотку, и наоборот, из носоглотки поступать в среднее ухо. Поэтому дети часто болеют отитом, источником которого является воспалительный процесс в носоглотке. Слуховая труба выполняет вентиляционную функцию. Установлено, что в спокойном состоянии её стенки прилегают друг к другу. Открытие труб происходит во время глотания, зевания. В этот момент воздух из носоглотки поступает в полость среднего уха - дренажная функция трубы. Она является той трубой, которая способствует оттоку гноя или другого ээксудата из полости среднего уха при воспалении. Если этого не происходит, возможен прорыв инфекции через крышу на мозговые оболочки, либо разрыв барабанной перепонки (прободение).

Воздухоносные ячейки сосцевидного отростка.

Сосцевидный отросток находится на безволосом пространстве позади ушной раковины. На разрезе сосцевидный отросток напоминает «пористый шоколад». Самая большая воздухоносная ячейка сосцевидной кости называется пещера. Она имеется уже у новорождённого. Она выстлана слизистой оболочкой, которая является продолжением слизистой оболочки барабанной полости. Благодаря соединению пещеры и барабанной полости, инфекция может переходить из среднего уха в пещеру, а затем на костное вещество сосцевидного отростка, вызывая его воспаление - мастоидит.

Рисунок 4. Строение среднего уха.

Внутреннее ухо (лабиринт) – 2 части:

1. Костный лабиринт.

2. Перепончатый лабиринт, который находится в костном как в футляре.

Между ними есть пространство, которое называется перелимфотическое. В нём находится ушная жидкость - перилимфа. Внутри перепончатого лабиринта также есть лимфа - эндолимфа. Т.о. во внутреннем ухе имеется 2 ушные жидкости, которые отличаются по составу и функциям. Лабиринт имеет 3 части:

Преддверие;

Полукружные каналы;

Преддверие и полукружные каналы относятся к вестибулярному аппарату. Улитка относится к слуховой сенсорной системе. Она по форме напоминает садовую улитку, образована спиральным каналом, который закруглён в 2,5 оборота. Диаметр канала уменьшается от основания к вершине улитки. В центре улитки находится спиральный гребень, вокруг которого закручена спиральная пластина. Эта пластина выдаётся в просвет спирального канала. На разрезе этот канал имеет следующее строение: двумя мембранами основной и вестибулярный аппарат делится на 3 части, в центре образуя улитковый вход. Верхняя мембрана называется вестибулярная, нижняя - основная. На основной мембране периферический рецептор уха - кортиев орган. Т.о кортиев орган расположен в улитковом ходу, на основной мембране.

Основная мембрана - это наиболее значимая стенка улиткового хода, состоит из множества натянутых струн, которые называются слуховые струны. Установлено, что длина струн и их степень натяжения зависит от того, на каком завитке улитки они находятся. Выделяют 3 завитка улитки:

1. основной (нижний);

2. средний;

3. верхний.

Установлено, что в нижнем завитке находятся короткие и тугонатянутые струны. Они резонируют на высокие звуки. На верхнем завитке находятся длинные и слабонатянутые струны. Они резонируют на низкие звуки.

Кортиев орган является периферическим рецептором слуха. Состоит из 2 видов клеток:

1.Опорные клетки (столбовые) - имеют вспомогательное значение.

2.Волосковые (наружные и внутренние).

Главное значение имеют внутренние волосковые клетки. В них происходит трансформация звуковой энергии в физиологический процесс нервного возбуждения, т.е. образование нервных импульсов.

Опорные клетки расположены под углом друг к другу, образуя тоннель. В нём, в один ряд, располагаются внутренние волосковые клетки. По своей функции эти клетки являются вторичночувствующими. Их головной конец закруглён и имеет волоски. Сверху волоски покрывает мембрана, которая называется покровной. Установлено, что при смещении покровной мембраны относительно волосков, возникают ионные токи.

Ушные жидкости.

Перилимфа - по своему составу напоминает спинномозговую жидкость, но содержит при этом больше белка и ферментов. Её основная функция - это приведение в колебательное состояние основной мембраны.

Эндолимфа - по своему составу похожа на внутриклеточную жидкость. В ней много растворимого кислорода, и поэтому она служит питательной средой для кортиевого органа.

Ход проводящих путей слуховой сенсорной систем

Проводникового отдела слуховой сенсорной системы состоит из 4 нейронов:

1-ый нейрон расположен в спиральном узле улитки. Спиральный узел находится у основания спирального гребля. Периферические отростки образованы внутренними волосковыми отростками кортиева органа. Аксоны (центральные отростки) образуют слуховой нерв. Он покидает полость внутреннего уха через внутренние слуховые отверстия и направляется к продолговатому мозгу, где находится 2-ой нейрон – это слуховые ядра продолговатого мозга; 3-ий нейрон расположен также в структурах продолговатого мозга (в оливах); 4 ый нейрон находится в первичных слуховых центрах среднего мозга – это нижние бугры четверохолмия и в промежуточном мозге – это медиальное коленчатое тело.

Слуховой путь, как и зрительный, является частичноперекрещенным. Меньшая часть не перекрещивается и идёт по своей стороне, а большая часть перекрещивается и идёт на противоположную сторону.

Т.о. улитка связана с обоими полушариями головного мозга. При поражении слуховой коры с одной стороны снижение слуха наблюдается с двух сторон, причём с большим поражением противоположного уха.

3. Корковый отдел

Корковый отдел состоит из:

1.Ядерной зоны, к которой относится извилина «Гешле», что соответствует 4 полю по Бауману.

2.Периферическая зона, 4 и 22 поле по Бродману.

Литература

1. Нейман Л.В., Богомильский М.Р. Анатомия, физиология и патология органов слуха и речи. М., 2003.

2. Слуховая система. Ред. Я.А. Альтман. Л., 1990.

Возрастные особенности органа зрения

Глазное яблоко у новорожденного относительно боль­шое, его переднее-задний размер равен 17,5 мм, масса - 2,3 г. Зрительная ось глазного яблока проходит латеральнее, чем у взрослого человека. Растет глазное яблоко на первом году жизни ребенка быстрее, чем в последующие годы. К 5 годам масса глазного яблока увеличивается на 70%, а к 20-25 годам - в 3 раза по сравнению с ново­рожденным.

Роговица у новорожденного относительно толстая, кри­визна ее в течение жизни почти не меняется; хрусталик по­чти круглый, радиусы его передней и задней кривизны при­мерно равны. Особенно быстро растет хрусталик в течение первого года жизни, в дальнейшем темпы роста его снижа­ются. Радужка выпуклая кпереди, пигмента в ней мало, ди­аметр зрачка равен 2,5 мм. По мере увеличения возраста ре­бенка толщина радужки увеличивается, количество пиг­мента в ней возрастает к двум годам, диаметр зрачка ста­новится большим. В возрасте 40-50 лет зрачок немного су­живается.

Ресничное тело у новорожденного развито слабо. Рост и дифференцировка ресничной мышцы осуществляются до­вольно быстро. Способность к аккомодации устанавливает­ся к 10 годам. Зрительный нерв у новорожденного тонкий (0,8 мм), короткий, К 20 годам жизни диаметр его возрас­тает почти вдвое.

Мышцы глазного яблока у новорожденного развиты достаточно хорошо, кроме их сухожильной части. Поэтому движения глаза возможны сразу после рождения, однако координация этих движений наступает со второго месяца жизни ребенка.

Слезная железа у новорожденного имеет небольшие раз­меры, выводные канальцы железы тонкие. На первом ме­сяце жизни ребенок плачет без слез. Функция слезоотделе­ния появляется на втором месяце жизни ребенка. Жировое тело глазницы развито слабо. У людей пожилого и старчес­кого возраста жировое тело глазницы уменьшается в раз­мерах, частично атрофируется, глазное яблоко меньше выступает из глазницы.

Глазная щель у новорожденного узкая, медиальный угол глаза закруглен. В дальнейшем глазная щель быстро увели­чивается. У детей до 14-15 лет она широкая, поэтому глаз кажется большим, чем у взрослого человека.

ЦЕЛЬ : Знать схему строения преддверно-улиткового органа, его составные части, строение и функции кожи, ее производных: потовых, сальных желез, волос и ногтей.

Представлять проводящие пути слухового, вестибулярного и кожного анализаторов, функции уха и вестибулярного аппарата. Уметь показывать на плакатах, муляжах и планшетах составные части преддверно-улиткового органа.

Преддверно-улитковый орган (organum vestibulocochlearis), или орган слуха и равновесия, является периферической, рецепторной частью слухового и вестибулярного анализаторов, имеющей общее происхождение и местоположение. Орган слуха предназначен для восприятия звуков и передачи информации о звуковых раздражениях в мозг, орган равновесия - для восприятия положения и движения тела в пространстве и передачи об этом информации в мозг, что необходимо для сохранения равновесия.



Преддверно-улитковый орган почти полностью расположен в пирамиде височной кости и делится на 3 отдела: наружное, среднее и внутреннее ухо.(рис. 7.) Наружное, среднее и часть внутреннего уха - улитка составляют вместе орган слуха. Другая часть внутреннего уха - его преддверие и полукружные каналы относятся к органу равновесия.

Для лучшего запоминания рассмотрим схему строения пред­дверно-улиткового органа на рис 8.

Рис. 7. Наружное, среднее и внутреннее ухо (фронтальный разрез):

1 - завиток;

2 - молоточек;

3 - наковальня;

4 - стремя;

5 - полукружные каналы;

6 - улитка;

7 - преддверие;

8 - наружный слуховой проход;

10 - внутреннее ухо;

11 - среднее ухо (барабанная полость);

12 - барабанная перепонка;

13 - наружное ухо;

14 - противозавиток;

15 - раковина уха;

16 - ушной хрящ;

17 - слуховая труба;

18 - ушная долька

Наружное и среднее ухо проводят звуковые колебания к внутрен­нему уху и таким образом являются звукопроводящим аппаратом. Внутреннее ухо, в котором различают костный и перепончатый лабиринты, образует собственно орган слуха и орган равновесия.

ПРЕДДВЕРНО-УЛИТКОВЫЙ ОРГАН

Рис. 8. Схема строения преддверно-улиткового органа.

Наружное ухо включает ушную раковину и наружный слуховой проход, которые служат для улавливания и проведения звуковых коле­баний. Ушная раковина образована эластическим хрящом сложной формы, покрытым кожей. В нижней части ее хрящ отсутствует, вместо него имеется кожная складка с жировой тканью внутри - долька ушной раковины (мочка).

Наружный слуховой проход представляет собой 8-образную труб­ку длиной 35 мм, диаметром 6-9 мм. Состоит из хрящевой части (1/3 длины) и костной (остальные 2/3). В коже хрящевой части прохода на­ходятся сальные и особого рода церуминозные железы, вырабатыва­ющие ушную серу. При повышенной функции последних желез в на­ружном слуховом проходе могут образовываться так называемые сер­ные пробки.

Барабанная перепонка - тонкая полупрозрачная овальная фиброз­ная пластинка размером 9x11 мм, толщиной около 0.1 мм, отделяет наружный слуховой проход от среднего уха.

Среднее ухо включает барабанную полость и слуховую (евста­хиеву) трубу.(рис.9.)

Барабанная полость расположена в пирамиде височной кости между наружным слуховым проходом и внутренним ухом -лабиринтом. Она имеет объем около 1 см 3 и сообщается с полостями сосцевидного отростка височной кости и носоглоткой. В барабанной полости находятся три слуховые косточки: молоточек, наковальня и стремя, соединенные при помощи суставов подвижно и передающие колебания барабанной перепонки лабиринту через овальное окно преддверия.(рис.10). Движения косточек регулируют и предохраняют от чрез­мерных колебаний при сильном звуке две мышцы: мышца, напря­гающая барабанную перепонку, и стременная мышца.

Рис. 9. Барабанная перепонка и слуховые косточки:

1 - головка молоточка;

2 - короткая ножка наковальни;

3 - длинная ножка наковальни;

4 - рукоятка молоточка;

5 - слуховая труба;

6 - барабанная перепонка

Рис. 10. Слуховые косточки:

1 - короткая ножка наковальни;

2 - тело наковальни;

3 - головка молоточка;

4 - длинная ножка наковальни;

5 - передний отросток молоточка;

6 - задняя ножка стремени;

7 - рукоятка молоточка;

8 - основание стремени;

9 - передняя ножка стремени

Слуховая (евстахиева) труба длиной в среднем 35 мм, шириной около 2 мм соединяет среднее ухо с носоглоткой и способствует, выравниванию давления воздуха внутри барабанной полости с внеш­ним, что важно для нормальной работы звукопроводящего аппарата (барабанной перепонки и слуховых косточек). Воспаление слуховой трубы - евстахиит может значительно ухудшить эту функцию.

Внутреннее ухо образовано сложно устроенными костными кана­лами, лежащими в пирамиде височной кости и получившими название костного лабиринта. Он состоит из трех отделов: преддверия, полу­кружных каналов и улитки. Внутри костного лабиринта расположен перепончатый лабиринт, который в основном повторяет его

очертания.

Схема костного и перепончатого лабиринтов представлена на рис.11, 12.

Рис. 11. Костный лабиринт (вид спереди):

1 - передний полукружный канал;

2 - ампулярные костные ножки;

3 - общая костная ножка;

4 - завитки улитки;

5 - купол улитки;

6 - задний полукружный канал;

7 - боковой полукружный канал;

8 - простая костная ножка;

9 - преддверие

Рис. 12. Костная улитка:

1 - верхний завиток улитки;

2 - отверстие улитки;

3 - стержень;

4 - барабанная лестница;

5 - лестница преддверия;

6 - спиральная костная пластинка

Стенки перепончатого лабиринта состоят из тонкой соедините­льнотканной пластинки, покрытой плоским эпителием. Между внут­ренней поверхностью костного лабиринта и перепончатым лабирин­том находится узкая щель - перилимфатическое пространство, запол­ненное жидкостью - перилимфой. Перепончатый лабиринт заполнен эндолимфой.(рис.13). В перепончатом лабиринте выделяют сообщающиеся между собой улитковый проток, сферический и эллиптический ме­шочки и три полукружных протока. Улитковый проток имеет треу­гольную форму. Одна его стенка срастается со стенкой костного канала улитки, две другие отделяют его от перилимфатического пространства и называются спиральной (барабанной) и преддверной (вестибулярной) мембранами. Улитковый проток занимает среднюю часть костного спирального канала улитки и отделяет нижнюю часть его (барабанную лестницу), граничащую со спиральной мембраной, от верхней части (лестницы преддверия), прилежащей к преддверной мембране. В области верхушки (купола) улитки обе лестницы сообщаются друг с другом при помощи отверстия - геликотремы. В основании улитки барабанная лестница заканчивается у круглого окна, закры­того вторичной барабанной перепонкой. Лестница преддверия сооб­щается с перилимфатическим пространством преддверия, овальное окно которого закрыто основанием стремени. Внутри улиткового протока на спиральной мембране располагается слуховой спиральный (кортиев) орган. В основе спирального органа лежит базилярная пластинка (мембрана), которая содержит до 23000 тонких коллагеновых волокон (струн), натянутых от края костной спиральной пластин­ки до противоположной стенки спирального канала улитки на протя­жении от ее основания до купола и выполняющих роль струн - резона­торов. На базилярной пластинке расположены поддерживающие (опорные) и рецепторные волосковые (сенсорные) клетки, восприни­мающие механические колебания перилимфы, находящейся в лестнице преддверия и в барабанной лестнице.

Рис. 13. Перепончатый лабиринт (разрез через основной завиток улитки):

1 - лестница преддверия;

2 - стержень;

3 - улитковый проток (перепончатая улитка);

4 - покровная мембрана;

5 - спиральная перепонка;

6 - базилярная пластинка;

7 - кортиев (спиральный) орган;

8 - спиральная костная пластинка;

9 - барабанная лестница;

10 - костная стенка улитки

В преддверии расположены две части перепончатого лабиринта: продолговатый эллиптический мешок (маточка) и грушевидный сфе­рический мешок (мешочек).(рис.14). Оба они сообщаются друг с другом при помощи тонкого канальца - протока, от которого отходит эндолимфатический проток, заканчивающийся эндолимфатическим мешком, лежащим в толще твердой мозговой оболочки на задней поверхности пирамиды, Сферический мешочек посредством соединяющего протока сообщается также с улитковым протоком, а в эллиптический мешочек (маточку) открывается пять отверстий переднего, заднего и латераль­ного полукружных протоков, залегающих в одноименных костных полукружных каналах. В местах расширений костных полукружных каналов (костных ампулах) каждый перепончатый полукружный про­ток имеет перепончатую ампулу.

На внутренней поверхности сферического (пятно мешочка), эллиптического (пятно маточки) мешочков и стенок перепончатых ампул (ампулярные гребешки) имеются покрытые желеподобным веществом с отолитами из мелких кристаллов углекислого кальция волосковые чувствительные клетки (вестибулорецепторы), восприни­мающие колебания эндолимфы при движениях, поворотах, наклонах головы. В пятнах маточки и мешочка расположены вестибулорецеп­торы, воспринимающие статическое положение головы в пространстве и линейное ускорение, в гребешках ампул полукружных протоков -вестибулорецепторы, реагирующие на угловое ускорение головы при ее внезапных поворотах в одной из трех плоскостей: фронтальной, сагиттальной и горизонтальной.

Рис. 14. Перепончатый лабиринт:

1 - передний перепончатый полукружный проток;

2 - нерв маточки;

3 - маточка;

4 - мешочек;

5 - перепончатая улитка (улитковый проток);

6 - общая перепончатая ножка;

7 - улитковый нерв;

8 - эндолимфатический мешок;

9 - эндолимфатический проток;

10 - нерв мешочка;

11 - боковой перепончатый полукружный проток;

12 - задний перепончатый полукружный проток;

13 - нервы ампул;

14 - ампулярные концы перепончатых полукружных протоков

Слуховой анализатор - анализатор, обеспечивающий вос­приятие и анализ звуковых раздражителей и формирующий слуховые ощущения и образы. Слуховой анализатор человека воспринимает речи имеют частоту колебаний в 1 с в пределах 150-2500 Гц. Звуковые колебания улавливаются ушной раковиной и по наружному слуховому проходу передаются барабанной перепонке. Колебания последней передаются цепи слуховых косточек среднего уха и через основание стремени - мембране овального окна преддверия и перилимфе лест­ницы преддверия. В лестнице преддверия эти колебания распростра­няются в сторону купола улитки, а затем через отверстие улитки (гели-котрему) г на перилимфу в барабанной лестнице, закрытой в основа­нии улитки (круглое окно) вторичной барабанной перепонкой. Бла­годаря эластичности этой перепонки практически несжимаемая жид­кость - перилимфа - приходит в движение. Звуковые колебания перилимфы в барабанной лестнице передаются базилярной пластинке (мембране), на которой расположен спиральный (кортиев) орган, и эндолимфе в улитковом протоке. Колебания эндолимфы и базилярной пластинки вводят в действие звуковоспринимающий аппарат, волосковые (сенсорные, рецепторные) клетки которого своими волосками касаются покровной мембраны, возбуждаются и трансфор­мируют механические движения в нервный импульс. Импульс воспри­нимается окончаниями биополярных клеток, тела которых находятся в спиральном узле улитки (улитковом узле), а их аксоны образуют улитковую часть преддверно-улиткового нерва. Второй нейрон распо­лагается в мосту, третий - в медиальном коленчатом теле таламической области и нижнем холмике четверохолмия (подкорковый центр слуха), четвертый - в височной доле коры (поперечные височные извилины, или извилины Р.Гешля). Здесь осуществляется высший ана­лиз нервных импульсов, поступающих из звуковоспринимающего ап­парата (корковый центр слухового анализатора).

Кроме воздушной проводимости звука, при которой звуковые колебания улавливаются ушной раковиной и передаются по наруж­ному слуховому проходу на барабанную перепонку, имеется и костная проводимость звука, осуществляемая через кости черепа. При этом звуковые колебания даже при закрытом слуховом проходе (например, от звучащего камертона) передаются сразу на перилимфу верхнего и нижнего ходов улитки внутреннего уха, а затем на эндолимфу среднего хода (улиткового протока). Происходит колебание базилярной плас­тинки с волосковыми (сенсорными) клетками, в результате чего они возбуждаются, и возникшие импульсы передаются к нейронам голов­ного мозга.

Вестибулярный анализатор - анализатор, обеспечивающий анализ информации о положении и перемещениях тела в пространстве. (рис.15). Раздражение рецепторных (сенсорных, волосковых) клеток в пятнах мешочков и гребешках ампул при изменении положения и угловых ускорениях головы и при участии колебаний эндолимфы передаются на этих клетках чувствительным окончаниям преддверной части преддверно-улиткового нерва. Тела нейронов этого нерва (первый нейрон) находятся в преддверном узле, лежащем на дне внутреннего слухового прохода. Аксоны нейронов преддверного узла в составе преддверно-улиткового нерва следуют к вестибулярным ядрам моста. Аксоны клеток вестибулярных ядер (второй нейрон) идут к мозжечку, ретикулярной формации и спинному мозгу - двигательным центрам, управляющим положением тела при движениях благодаря инфор­мации от вестибулярного аппарата, проприорецепторов мышц шеи и органа зрения.

Сенсорной системой(анализатором) - называют часть нервной системы, состоящую из воспринимающих элементов - сенсорных рецепторов, нервных путей, передающих информацию от рецепторов в мозг и частей мозга, которые перерабатывают и анализируют эту информацию

В сенсорную систему входят 3 части

1. Рецепторы - органы чувств

2. Проводниковый отдел, связывающий рецепторы с мозгом

3. Отдел коры головного мозга, которая воспринимает и обрабатывает информацию.

Рецепторы - периферическое звено, предназначенное для восприятия раздражителей внешней или внутренней среды.

Сенсорные системы имеют общий план строения и для сенсорных систем характерна

Многослойность - наличие нескольких слоев нервных клеток, первый из которых связан с рецепторами, а последний с нейронами моторных областей коры большого мозга. Нейроны специализированы для переработки разных видов сенсорной информации.

Многоканальность - наличие множества параллельных каналов обработки и передачи информации, что обеспечивает детальность анализа сигналов и большую надежность.

Разное число элементов в соседних слоях , что формирует, так называемые, «сенсорные воронки»(суживающиеся или расширяющиеся) Они могут обеспечить устранение избыточности информации или, наоборот, дробный и сложный анализ признаков сигнала

Дифференциация сенсорной системы по вертикали и по горизонтали. Дифференциация по вертикали означает формирование отделов сенсорной системы, состоящих из нескольких нейронных слоев(обонятельные луковицы, кохлеарные ядра, коленчатые тела).

Дифференциация по горизонтали представляет наличие разных по свойствам рецепторов и нейронов в пределах одного слоя. Например палочки и колбочки в сетчатке глаза по-разному перерабатывают информацию.

Основной задачей сенсорной системы является восприятие и анализ свойств раздражителей, на основе которых возникают ощущения, восприятия, представления. Это составляет формы чувственного, субъективного отражения внешнего мира

Функции сенсорных систем

  1. Обнаружение сигналов. Каждая сенсорная система в процессе эволюции приспособилась к восприятию адекватных, присущих для данной системы раздражителей. Сенсорная система, например глаз, может получать разные - адекватные и неадекватные раздражения(свет или удар по глазу). Сенсорные системы воспринимают силу - глаз воспринимает 1 световой фотон(10 в -18 Вт). Удар по глазу(10 в -4 Вт). Электрический ток(10 в -11 Вт)
  2. Различение сигналов.
  3. Передача или преобразование сигналов . Любая сенсорная система работает, как преобразователь. Она преобразует одну форму энергию действующего раздражителя в энергию нервного раздражения. Сенсорная система не должна исказить сигнала раздражителя.
  • Может носить пространственный характер
  • Временные преобразования
  • ограничение избыточности информации(включение тормозных элементов, которые затормаживают соседние рецепторы)
  • Выделение существенных признаков сигнала
  1. Кодирование информации - в форме нервных импульсов
  2. Детектирование сигналов, т. е. выделение признаков раздражителя, имеющего поведенческое значение
  3. Обеспечивают опознание образов
  4. Адаптируются к действию раздражителей
  5. Взаимодействие сенсорных систем, которые формируют схему окружающего мира и одновременно позволяют нам соотносить нас самих с этой схемой, для нашего приспособления. Все живые организмы не могут существовать без восприятия информации из окружающей среды. Чем точнее организм получает такую информацию, тем будут выше его шансы в борьбе за существование

Сенсорные системы способны реагировать на неадекватные раздражители. Если попробовать клеммы батарейки, то это вызывает вкусовое ощущение - кислое, это действие электрического тока. Такая реакция сенсорной системы на адекватные и неадекватные раздражители, поставили перед физиологией вопрос - на сколько мы можем доверять нашим органам чувств.

Иоган Мюллер сформулировал в 1840 году закон специфической энергии органов чувств.

Качество ощущений не зависит от характера раздражителя, а определяется всецело заложенной в чувствительной системе специфической энергией, которая освобождается при действии раздражителя.

При таком подходе мы можем знать только, что заложено в нас самих, а не что в окружающем мире. Последующие исследования показали, что возбуждения в любой сенсорной системе возникают на основе одного источника энергии - АТФ.

Ученик Мюллера Гельмгольц создал теорию символов , в соответствии с которой он рассматривал ощущения, как символы и предметы окружающего мира. Теория символов отрицала возможность познания окружающего мира.

Эти 2 направления были названы физиологическим идеализмом. Что же собой представляет ощущение? Ощущение это субъективный образ объективного мира. Ощущения - это образы внешнего мира. Они существуют в нас и порождаются действием вещей на наши органы чувств. У каждого из нас этот образ будет являться субъективным, т.е. он зависит от степени нашего развития, опыта и каждый человек воспринимает окружающие предметы и явления по своему. Они будут являться объективными, т.е. это значит, то они существуют, независимо от нашего сознания. Раз имеется субъективность восприятия, то как решить, кто же наиболее правильно воспринимает? Где же будет истина? Критерием истины является практическая деятельность. Идет последовательное познание. На каждом этапе получается новая информация. Ребенок пробует игрушки на вкус, разбирает их на детали. Именно на основе этого глубоко опыта мы приобретаем более глубокие знания о мире.

Классификация рецепторов.

  1. Первичные и вторичные. Первичные рецепторы представляют собой рецепторное окончание, которое образовано самим первым чувствительным нейроном(Тельце Пачини, тельце Мейснера, диск Меркеля, Тельце Руффини). Этот нейрон лежит в спинальном ганглии. Вторичные рецепторы воспринимают информацию. За счет специализированных нервных клеток, которые затем передают возбуждение на нервное волокно. Чувствительные клетки органов вкуса, слуха, равновесия.
  2. Дистантные и контактные. Часть рецепторов воспринимает возбуждение при непосредственном контакте - контактные , а другие могут воспринимать раздражение на некотором расстоянии - дистантные
  3. Экстерорецепторы, интерорецепторы. Экстерорецепторы - воспринимают раздражение из внешней среды - зрение, вкус и др. и они обеспечивают на приспособление к окружающей среде. Интерорецепторы - рецепторы внутренних органов. Они отражают состояние внутренних органов и внутренней среды организма.
  4. Соматические - поверхностные и глубокие. Поверхностные - кожи, слизистых оболочек. Глубокие - рецепторы мышц, сухожилий, суставов
  5. Висцеральные
  6. Рецепторы ЦНС
  7. Рецепторы специальных чувств - зрительные, слуховые, вестибулярные, обонятельные, вкусовые

По характеру восприятия информации

  1. Механорецепторы(кожа, мышцы, сухожилия, суставы, внутренние органы)
  2. Терморецепторы(кожа, гипоталамус)
  3. Хеморецепторы(дуга аорты, каротидный синус, продолговатый мозг, язык, нос, гипоталамус)
  4. Фоторецептоыр(глаз)
  5. Болевые(ноцицептивные) рецепторы(кожа, внутренние органы, слизистые оболочки)

Механизмы возбуждения рецепторов

В случае первичных рецепторов, действие раздражителя воспринимается окончанием чувствительного нейрона. Действующий раздражитель может вызывать гиперполяризацию или деполяризацию поверхностной мембраны рецепторы в основном за счет изменения натриевой проницаемости. Повышение проницаемости к ионам натрия приводит к деполяризации мембраны и на мембране рецептора возникает рецепторный потенциал. Он существует до тех пор, пока действует раздражитель.

Рецепторный потенциал не подчиняется закону «Все или ничего», его амплитуда зависит от силы раздражителя. У него нет периода рефрактерности. Это позволяет суммироваться рецепторным потенциалам при действии последующих раздражителей. Он распространяется мелено, с угасанием. Когда рецепторный потенциал достигает критической пороговой величины, он вызывает появление потенциала действия в ближайшем перехвате Ранвье. В перехвате Ранвье возникает потенциал действия, который подчиняется закону «Все или ничего» Этот потенциал будет распространяющимся.

Во вторичном рецепторе действие раздражителя воспринимается рецепторной клеткой. В этой клетке возникает рецепторный потенциал, следствием которого будет являться выделение медиатора из клетки в синапс, который действует на постсинаптическую мембрану чувствительного волокна и взаимодействие медиатора с рецепторами приводит к образованию другого, локального потенциала, который называют генераторным . Он по своим свойства идентичен рецепторным. Его амплитуда определяется количеством выделившегося медиатора. Медиаторы - ацетилхолин, глутамат.

Потенциалы действия возникают периодически, т.к. для них характерен период рефрактерности, когда мембрана утрачивает свойство возбудимости. Потенциалы действия возникают дискретно и рецептор в сенсорной системе работает, как аналогово-дискретный преобразователь. В рецепторах наблюдается приспособление - адаптация к действию раздражителей. Есть быстроадаптирующиеся, есть медленно адаптирующиеся. При адаптация снижается амплитуда рецепторного потенциала и число нервных импульсов, которые идут по чувствительному волокну. Рецепторы кодируют информацию. Оно возможно по частоте потенциалов, по группировки импульсов в отдельные залпы и интервалами между залпами. Кодирование возможно по числу активированных рецепторов в рецептивном поле.

Порог раздражения и порог развлечения.

Порог раздражения - минимальная сила раздражителя, которая вызывает ощущение.

Порог развлечении - минимальная сила изменения раздражителя, при которой возникает новое ощущение.

Волосковые клетки возбуждаются при смещении волосков на 10 в -11 метра - 0,1 амстрема.

В 1934 году Вебер сформулировал закон, устанавливающий зависимость между первоначальной силой раздражения и интенсивностью ощущения. Он показал, что изменение силы раздражителя, етсь величина постоянная

∆I / Io = К Io=50 ∆I=52,11 Io=100 ∆I=104,2

Фехнер определили, что ощущение прямопропорционально логарифму раздражения

S=a*logR+b S-ощущение R- раздражение

S=KI в Aстепени I - сила раздражения, К и А - константы

Для тактильных рецепторов S=9,4*I d 0,52

В сенсорных системах есть рецепторы саморегуляции чувствительности рецепторов.

Влияние симпатической системы - симпатическая система повышает чувствительность рецепторов к действию раздражителей. Это полезно в ситуации опасности. Повышает возбудимость рецепторов - ретикулярная формация. В составе чувствительных нервов обнаружены эфферентные волокна, которые могут изменять чувствительность рецепторов. Такие нервные волокна есть в слуховом органе.

Сенсорная система слуха

У большинства людей, живущих в современной остановке слух прогрессивно падает. Это происходит с возрастом. Этому способствует загрязнение звуками окружающей среды - автотранспорт, дискотека и др. Изменения в слуховом аппарате становятся не обратимыми. Уши человека содержат 2 чувствительных органа. Слух и равновесие. Звуковые волны распространяются в форме сжатий и разряжений в упругих средах и при этом распространение звуков в плотных средах идет лучше, чем в газах. Звук обладает 3мя важными свойствами - высотой или частотой, мощностью, или интенсивностью и тембром. Высота звука зависит от частоты колебаний и ухо человека воспринимает с частотой от 16 до 20000 Гц. С максимальной чувствительностью от 1000 о 4000 Гц.

Основная частота звука гортани мужчины - 100 Гц. Женщины - 150 Гц. При разговоре возникают дополнительные высокочастотные звуки в форме шипения, свиста, которые исчезают при разговоре по телефону и это делает речь понятнее.

Мощность звука определяется амплитудой колебаний. Мощность звука выражают в Дб. Мощность представляет собой логарифмическую зависимость. Шепотная речь - 30 Дб, нормальная речь - 60-70 Дб. Звук транспорта - 80, шум мотора самолета - 160. Мощность звука 120 Дб вызывает дискомфорт, а 140 приводят к болезненным ощущениям.

Тембр определяется вторичными колебаниями на звуковых волнах. Упорядоченные колебания - создают музыкальные звуки. А беспорядочные колебания вызывают просто шум. Одна и та же нот звучит по разному на разных инструментах из за разных дополнительных колебаний.

Ухо человека имеет 3 составные части - наружное, среднее и внутренне ухо. Наружное ухо представлено ушной раковиной, которое действует как звука улавливающая воронка. Ухо человека менее совершенно улавливает звуки, чем у кролика, лошади, которые умеют управлять своими ушами. В основе ушной раковины - хрящ, за исключением мочки уха. Хрящевая ткань придает эластичность и форму уху. Если хрящ повреждается, то он восстанавливается разрастаясь. Наружный слуховой проход S образной формы - внутрь, вперед и вниз, длина 2,5 см. Слуховой проход покрыт кожей с малой чувствительностью наружной части и высокой чувствительностью внутренней. В наружной части слухового прохода имеются волосы, которые предупреждают попадание в слуховой проход частиц. Железы слухового прохода вырабатывают желтую смазку, которая тоже предохраняет слуховой проход. В конце прохода - барабанная перепонка, которая состоит из фиброзных волокон, покрытых снаружи кожей, а внутри - слизистой. Барабанная перепонка отделяет среднее от наружного уха. Она колеблется с частотой воспринимаемого звука.

Среднее ухо представлено барабанной полостью, объем которой равен примерно 5-6 капель воды и барабанная полость заполнена водухом, выстлана слизистой оболочкой и содержит 3 слуховые косточки: молоточек, наковальня и стремечко.среднее ухо сообщается с носоглоткой с помощью евстахиевой трубы. В состоянии покоя просвет евстахиевой трубы закрыт, что выравнивает давление. Воспалительные процессы, приводящие к воспалению этой трубы вызывают ощущение заложенности. Среднее ухо отделено от внутреннего овальным и круглым отверстием. Колебания барабанной перепонки через систему рычагов передаются стремечком на овальное окно, причем наружное ухо осуществляет передачу звуков воздушным способом.

Имеется различие площади барабанной перепонки и овального окна(площадь барабанной перепонки равна 70мм в кв. а у овального окна- 3.2мм в кв). При передаче колебания с перепонки на овальное окно амплитуда уменьшается а сила колебаний увеличивается в 20-22 раза. В частотах до 3000 Гц передается 60% Е на внутреннее ухо. В среднем ухе имеется 2 мышцы изменяющие колебания: мышца напрягающая барабанную перепонку(прикрепляется к центральной части барабанной перепонки и к рукоятке молоточка)- при увеличении силы сокращения уменьшается амплитуда; мышца стремечка- ее сокращения ограничивают колебания стремечка. Эти мышцы предупреждают травмы барабанной перепонки. Кроме воздушной передачи звуков есть и костная передача, но это сила звука не в состоянии вызвать колебания костей черепа.

Внутрее ухо

внутреннее ухо представляет собой лабиринт, состоящий из взаимосвязанных трубочек и расширений. Во внутреннем ухе располагается орган равновесия. Лабиринт имеет костную основу, а внутри располагается перепончатый лабиринт и там находится эндолимфа. К слуховой части относится улитка, она образует 2.5 оборота вокруг центральной оси и делится на 3 лестницы: вестибулярная, барабанная и перепончатая. Вестибулярный канал начинается мембраной овального окна, а заканчивается круглым окном. На вершине улитки эти 2 канала сообщаются с помощью геликокрема. А оба этих канала заполнены перилимфой. В среднем перепончатом канале располагается звуковоспринимающий аппарат — кортиев орган. Основная мембрана построена из эластических волокон, которые начинаются у основания(0.04мм) и до вершины (0.5мм). К вершине плотность волокон уменьшается в 500 раз. На основной мембране располагается кортиев орган. Он построен из 20-25 тысяч специальных волосковых клеток, расположенных на поддерживающих клетках. Волосковые клетки лежат в 3-4 ряда(наружный ряд) и в один ряд(внутренний). На вершине волосковых клеток имеются стереоцили или киноцили- самые большие стереоцили. К волосковым клеткам подходят чувствительные волокна 8 пары ЧМН от спирального ганглия. При этом 90% выделенных чувствительных волокон оказываются на внутренних волосковых клетках. На одну внутреннюю волосковую клетку конвергирует до 10 волокон. А в составе нервных волокон есть и эфферентные(оливо-улиточный пучок). Они образуют тормозные синапсы на чувствительных волокнах от спирального ганглия и иннервирует наружные волосковые клетки. Раздражение кортиевого органа связано с передачей колебаний косточек на овальное окно. Низкочастотные колебания распространяются от овального окна до вершины улитки (вовлекается вся основная мембрана).при низких частотах наблюдается возбуждение волосковых клеток лежащих на вершине улитки. Изучением распространения волн в улитке занимался Бекаши. Он обнаружил, что с увеличением частоты вовлекается меньший по протяженности столб жидкости. Высокочастотные звуки не могут вовлечь весь столб жидкости, поэтому чем больше частота, тем меньше колеблется перилимфа. Колебания основной мембраны могут возникать при передаче звуков через перепончатый канал. При колебании основной мембраны происходит смещение волосковых клеток вверх, что вызывает деполяризацию, а если вниз- волоски отклоняются внутрь, что приводит к гиперполяризации клеток. При деполяризации волосковых клеток открываются Са-каналы и Са способствует потенциалу действия, который несет информацию о звуке. Наружные слуховые клетки имеют эфферентную иннервацию и передача возбуждения идет с помощью Асh на наружных волосковых клетках. Эти клетки могут изменять свою длину: они укорачиваются при гиперполяризации и удлиняются при поляризации. Изменение длины наружных волосковых клеток влияет на колебательный процесс, что улучшает восприятие звука внутренними волосковыми клетками. Изменение потенциала волосковых клеток связано с ионным составом эндо- и перилимфы. Перилимфа напоминает ликвор, а эндолимфа имеет высокую концентрацию К(150 ммоль). Поэтому эндолимфа приобретает положительный заряд к перилифме.(+80мВ). Волосковые клетки содержат много К; они имеют мембранный потенциал и отрицательно заряженный внутри и положительный снаружи(МП=-70мВ), а разница потенциалов дает возможность проникновения К из эндолимфы внутрь волосковых клеток. Изменение положения одного волоска открывает 200-300 К- каналов и возникает деполяризация. Закрытие сопровождается гиперполяризацией. В кортиевом органе идет частотное кодирование за счет возбуждения разных участков основной мембраны. При этом было показано что звуки низкой частоты могут кодироваться числом нервных импульсов таким же количеством как и звуком. Такое кодирование возможно при восприятии звука до 500Гц. Кодирование информации звука достигается увеличением числа залпов волокон на более интенсивный звук и за счет числа активирующихся нервных волокон. Чувствительные волокна спирального ганглия оканичиваются в дорсальных и вентральных ядрах улитки продолговатого мозга. От этих ядер сигнал поступает в ядра оливы как своей так и противоположной стороны. От ее нейронов идут восходящие пути в составе латеральной петли которые подходят к нижним бугоркам четверохолмия и медиальному коленчатому телу зрительного бугра. От последнего сигнал идет в верхнюю височную извилину(извилина Гешля). Это соответствует 41 и 42 полям(первичная зона) и 22 поле(вторичная зона). В ЦНС существует топотоническая организация нейронов, то есть воспринимаются звуки с разной частотой и разной интенсивностью. Корковый центр имеет значение для восприятия, последовательности звука и пространственной локализации. При поражении 22 поля нарушается определение слов (рецептивная оппозия).

Ядра верхней оливы делят на медиальные и латеральные части. А латеральные ядра определяют неодинаковую интенсивность звуков, поступающих к обеим ушам. Медиальное ядро верхней оливы улавливает временные различия поступления звуковых сигналов. Обнаружено что сигналы от обоих ушей поступают в различные дендритные системы одного и того же воспринимающего нейрона. Нарушение слухового восприятия может проявляться звоном в ушах при раздражении внутреннего уха или слухового нерва и двумя типами глухоты: проводниковой и нервной. Первая связана с поражениями наружного и среднего уха(серная пробка).Вторая связана с дефектами внутреннего уха и поражениями слухового нерва. У пожилых людей утрачивается способность воспринимать высокочастотные голоса. За счет двух ушей можно определять пространственную локализацию звука. Это оказывается возможным, если звук отклоняется от средины положения на 3 градуса. При восприятии звуков возможно развитие адаптации за счет ретикулярной формации и эфферентных волокон(воздействием на наружные волосковые клетки.

Зрительная система.

Зрение - многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза, затем идёт возбуждение фоторецепторов, передача и преобразование в нейронных слоях зрительной системы и заканчивается принятием высшими корковыми отделами решения о зрительном образе.

Строение и функции оптического аппарата глаза. Глаз имеет шарообразную форму, что важно для поворота глаза. Свет проходит через несколько прозрачных сред - роговицу, хрусталик и стекловидное тело, имеющие определённые преломляющие силы, выражающихся в диоптриях. Диоптрия равна преломляющей силе линзы с фокусным расстоянием 100 см. Преломляющая сила глаза при рассматривании далёких предметов - 59D, близких - 70,5D. На сетчатке образуется уменьшенное перевёрнутое изображение.

Аккомодация - приспособление глаза к ясному видению предметов на разных расстояниях. Хрусталик играет главную роль в аккомодации. При рассмотрении близких предметов ресничные мышцы сокращаются, циннова связка расслабляется, хрусталик становится более выпуклым в силу его эластичности. При рассмотрении дальних - мышцы расслаблены, связки натянуты и растягивают хрусталик, делая его более уплощённым. Ресничные мышцы иннервируются парасимпатическими волокнами глазодвигательного нерва. В норме дальняя точка ясного видения - в бесконечности, ближайшая - 10 см от глаза. Хрусталик с возрастом теряет эластичность, поэтому ближайшая точка ясного видения отодвигается и развивается старческая дальнозоркость.

Аномалии рефракции глаза.

Близорукость (миопия). Если продольная ось глаза слишком длинная или увеличивается преломляющая сила хрусталика, то изображение фокусируется перед сетчаткой. Человек плохо видит вдаль. Назначаются очки с вогнутыми стёклами.

Дальнозоркость (гиперметропия). Развивается при уменьшении преломляющих сред глаза или при укорочении продольной оси глаза. В результате изображение фокусируется за сетчаткой и чел плохо видит близкорасположенные предметы. Назначаются очки с выпуклыми линзами.

Астигматизм - неодинаковое преломление лучей в разных направлениях, обусловленное не строго сферической поверхностью роговой оболочки. Компенсируются очками с поверхностью, приближающейся к цилиндрической.

Зрачок и зрачковый рефлекс. Зрачок - отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает чёткость изображения на сетчатке, увеличивая глубину резкости глаза и за счёт устранения сферической аберрации. Если прикрыть глаз от света, а затем открыть его, то зрачок быстро сужается - зрачковый рефлекс. На ярком свету размер - 1,8 мм, при среднем - 2,4, в темноте - 7,5. Увеличение приводит к ухудшению качества изображения, но повышает чувствительность. Рефлекс имеет адаптационное значение. Расширяет зрачок симпатика, сужает - парасимпатика. У здоровых размеры обоих зрачков одинаковы.

Структура и функции сетчатки. Сетчатка - внутренняя светочувствительная оболочка глаза. Слои:

Пигментный - ряд отростчатых эпителиальных клеток чёрного цвета. Функции: экранирование (препятствует рассеиванию и отражению света, повышая чёткость), регенерация зрительного пигмента, фагоцитоз обломков палочек и колбочек, питание фоторецепторов. Контакт между рецепторами и пигментным слоем слабая, поэтому именно здесь происходит отслойка сетчатки.

Фоторецепторы. Колбы отвечают за цветовое зрение, их - 6-7 млн. Палки за сумеречное, их - 110-123 млн. Они расположены неравномерно. В центральной ямке - только колбы, здесь - наибольшая острота зрения. Палки чувствительнее колб.

Строение фоторецептора. Состоит из наружной воспринимающей части - наружного сегмента, с зрительным пигментом; соединительной ножки; ядерной части с пресинаптическим окончанием. Наружная часть состоит из дисков - двумембранная структура. Наружные сегменты постоянно обновляются. Пресинаптическое окончание содержит глутамат.

Зрительные пигменты. В палках - родопсин с поглощением в области 500 нм. В колбах - йодопсин с поглощениями 420 нм (синий), 531 нм (зелёный), 558 (красный). Молекула состоит из белка опсина и хромофорной части - ретиналя. Только цис-изомер воспринимает свет.

Физиология фоторецепции. При поглощении кванта света цис-ретиналь превращается в транс-ретиналь. Это вызывает пространственные изменения в белковой части пигмента. Пигмент обесцвечивается и переходит в метародопсин II, способный взаимодействовать с примембранным белком трансдуцином. Трансдуцин активируется и связывается с ГТФ, активируя фосфодиэстеразу. ФДЭ разрушает цГМФ. В результате концентрация цГМФ падает, что приводит к закрытию ионных каналов, при этом понижается концентрация натрия, приводя к гиперполяризации и возникновению рецепторного потенциала, распостраняющимся по клетке до пресинаптического окончания и вызывая уменьшение выделения глутамата.

Восстановление исходного темнового состояния рецептора. При утрате метародопсином способности взаимодействовать с трандуцином и активируется гуанилатциклаза, синтезирующая цГМФ. Гуанилатциклаза активируется падением концентрации кальция, выбрасываемого из клетки белком-обменником. В результате концентрация цГМФ повышается и она вновь связывается с ионным каналом, открывая его. При открытии в клетку идут натрий и кальций, деполяризуя мембрану рецептора, переводя его в темновое состояние, что вновь ускоряет выход медиатора.

Нейроны сетчатки.

Фоторецепторы синаптически связаны с биполярными нейронами. При действии света на медиатор уменьшается выделение медиатора, что приводит к гиперполяризации биполярного нейрона. От биполярного сигнал передаётся на ганглиозный. Импульсы от многих фоторецепторов конвергируют к одному ганглиозному нейрону. Взаимодействие соседних нейронов сетчатки обеспечивается горизонтальными и амакриновыми клетками, сигналы которых меняют синаптическую передачу межде рецепторами и биполярными (горизонтальные) и между биполярными и ганглиозными (амакриновые). Амакриновые клетки осуществляют боковое торможение между соседними ганглиозными клетками. В системе есть и эфферентные волокна, действующие на синапсы между биполярными и ганглиозными клетками, регулируя возбуждение меж ними.

Нервные пути.

1ый нейрон - биполярный.

2ой - ганглиозный. Их отростки идут в составе зрительного нерва, делают частичный перекрёст (необходимо для обеспечения каждого полушария информацией от каждого глаза) и идут в мозг в составе зрительного тракта, попадая в латеральное коленчатое тело таламуса (3ий нейрон). Из таламуса - в проекционную зону коры 17ое поле. Здесь 4ый нейрон.

Зрительные функции.

Абсолютная чувствительность. Для возникновения зрительного ощущения необходимо, чтобы световой раздражитель имел минимальную (пороговую) энергию. Палка может быть возбуждена одним квантом света. Палки и колбы мало различаются по возбудимости, но число рецепторов, посылающих сигналы на одну ганглиозную клетку различно в центре и на периферии.

Зрительная алаптация.

Приспособление зрительной сенсорной системы к условиям яркрй освещённости - световая адаптация. Обратное явление - темновая адаптация. Повышение чувствительности в темноте - поэтапное, обусловленное темновым восстановлением зрительных пигментов. Сначала восстанавливается йодопсин колб. Это мало влияет на чувствительность. Затем восстанавливается родопсин палок, что очень сильно повышает чувствительность. Для адаптации так же важны процессы изменения связей между элементами сетчатки: ослабление горизонтального торможения, приводящее к увеличению числа клеток, посылающее сигналы на ганглиозный нейрон. Влияние ЦНС тоже играет роль. При освещении одного глаза понижает чувствительность другого.

Дифференциальная зрительная чувствительность. По закону Вебера человек различит разницу в освещении, если оно будет сильнее на 1-1,5%.

Яркостной контраст происходит из-за взаимного латерального торможения зрительных нейронов. Серая полоска на светлом фоне кажется темнее серой на тёмном, так как клетки возбуждённые светлым фоном тормозят клетки, возбуждённые серой полоской.

Слепящая яркость света . Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза. Чем дольше была темновая адаптация, тем меньшая яркость вызывает ослепление.

Инерция зрения. Зрительное ощущение появляется и пропадает не сразу. От раздражения до восприятия проходит 0,03-0,1 с. Быстро следующие одно за другим раздражения сливаются в одно ощущение. Минимальная частота следования световых стимулов, при которой происходит слияние отдельных ощущений, называется критической частотой слития мельканий. На этом основано кино. Ощущения, продолжающиеся после прекращения раздражения - последовательные образы (образ лампы в темноте после её выключения).

Цветовое зрение.

Весь видимый спектр от фиолетового (400нм) до красного (700нм).

Теории. Трёхкомпонентная теория Гельмгольца. Цветовое ощущение обеспечиваемое тремя типами колб, чувствительных к одной части спектра (красной, зелёной или синей).

Теория Геринга. В колбах есть вещества чувствительные к бело-чёрному, красно-зелёному и жёлто-синему излучениям.

Последовательные цветовые образы. Если смотреть на окрашенный предмет, а затем на белый фон, то фон приобретёт дополнительный цвет. Причина - цветовая адаптация.

Цветовая слепота. Дальтонизм - расстройство, при котором невозможно различие цветов. При протанопии не различается красный цвет. При дейтеранопии - зелёный. При тританопии - синий. Диагностируется полихроматическими таблицами.

Полная потеря цветовосприятия - ахромазия, при которой всё видится в оттенках серого.

Восприятие пространства.

Острота зрения - максимальная способность глаза различать отдельные детали объектов. Нормальный глаз различает две точки, видимые под углом 1минута. Максимальная острота в области жёлтого пятна. Определяется специальными таблицами.

Тема. Строение слуховой сенсорной системы

Наличие в кристаллах разориентированных областей (блоков), повернутых друг от­носительно друга на небольшие углы, отмечалось еще в ранних исследованиях кристаллов. Вскоре после открытия дифракции рентгеновских лучей кристаллами было установлено, что кристалл не обладает идеальной структурой: дифрагированные пучки, вопреки теории, распространились в области углов порядка не нескольких секунд, а несколь­ких минут, и обладали интенсивностью, на два порядка превосходящей расчет­ное значение. Пришлось предположить наличие в кристалле мозаики мелких (диаметром порядка 1 мкм) слабо разориентированных блоков. Это явление стали называть блочностью, или мозаичностью кристаллических структур (рис. 14.14).

грани DE и EF. Все лишние плоскости оканчиваются внутри бикристалла в единственной испорченной области, т. о. на границе блоков. Торец каждой оборванной плоскости образует краевую дислокацию, так что вся граница блоков представляется в виде вертикального ряда краевых дис­локации. Угол разориентации блоков определяется отношением вектора Бюргерса b к расстоянию h между дислокациями в гра­нице

Такая граница называется «границей наклона». Ее моделью может служить ряд дислокаций, параллельных оси поворота, обладающих вектором Бюргерса вдоль нормали к границе и располагающихся вдоль границы.

Блоки мозаики являются примером трехмерных (объемных) дефектов структуры кристалла. Практическая важность в исследовании причин образования и особенностей явления мозаичности заключается в том, что на границах блоков мозаики в кристаллах возникают значительные механические напряжения, что в ряде случаев нежелательно.

Тема. Строение слуховой сенсорной системы

Вопросы:

2. Барабанная перепонка. Строение, значение, возрастные особенности.

5. Характеристика проводникового и коркового отделов слухового анализатора. Их значение.

1. Наружное ухо: ушная раковина, наружный слуховой проход. Строение, значение, возрастные особенности.

Слуховая сенсорная система состоит из 3 отделов:

Периферический,

Проводниковый,

Корковый.

Периферический отдел представлен наружным, средним, внутренним ухом (рисунок 1).

Рисунок 1. Строение уха

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

1. Ушная раковина состоит из эластического хряща, покрытого кожей. Особенно кожный этот хрящ у ребёнка, поэтому даже незначительные удары по уху могут привести к образованию гематомы, с последующим её нагноением и деформации раковины. Хрящ имеет множество завитков и углублений - это связано с его защитной функцией. Ухо имеет воронкообразную форму, которая способствует улавливанию звуков и локализацию их в пространстве. В нижней части ушной раковины хрящ отсутствует - точка уха. Она состоит целиком из жировой клетчатки. Величина ушной раковины, её форма, уровень прикрепления к голове у каждого человека индивидуально (наследуется генетически). Однако отлично характерное строение ушной раковины у детей (наследственными заболеваниями, болезнь Дауна). Ушная раковина прикрепляется к голове при помощи мышц и связок, причём мышцы, двигающие ушную раковину, носят рудиментарный характер (недоразвиты).

2. Наружный слуховой проход начинается углублением в центре ушной раковины и направлен вглубь височной кости, заканчивается барабанной перепонкой. Т.о. барабанная перепонка не относится ни к наружному, ни к среднему уху, а лишь отделяет их. У взрослых наружный слуховой проход имеет длину 2,5-3 см. У детей он короче из-за недоразвития костного отдела. У новорождённого слуховой проход имеет вид щели и заполнен слущившимися эпителиальными клетками. Только к 3месяцам этот проход полностью очищается. Наружное ухо по своим параметрам приближается к уху взрослого = 12 годам. Его просвет становится овальным, и диаметр составляет 0,7-1см. Нормальный слуховой проход состоит из 2 частей:

Наружная часть (перепончато-хрящевая) - является продолжением ушного хряща.

Внутренняя часть (костная) - в плотную подходит к барабанной перепонке. Особенностью строения является то, что, самый узкий участок наружного прохода расположен вместе перехода одной части в другую. Поэтому, именно здесь излюбленное место образования серной пробки. В коже наружного слухового прохода имеются волоски и серные железы, которые продуцируют серу.

Причина образования серной пробки:

1. избыточное продукция серы;

2. изменение свойств серы (повышенная вязкость);

3. анатомическая (врожденная) узость и изогнутость наружного слухового прохода.

Наружный слуховой проход имеет 4 стенки. Его передняя стенка прилегает к головке нижнечелюстного сустава, поэтому при ударах по подбородку происходит травматизация головкой нижнечелюстного сустава наружного слухового прохода и кровотечения.

2. Барабанная перепонка. Строение, значение, возрастные особенности

Барабанная перепонка отделяет наружное ухо от среднего. Представляет собой тонкую, но эластичную мембрану толщиной 0,1 мм, диаметр 0,8-1см. Барабанная перепонка имеет 3 слоя:

1. кожный (эпидермальный);

2. соединительнотканный;

3. слизистый.

Первый слой является продолжением кожи наружного слухового прохода. Второй слой состоит из густо переплетенных циркулярных и радиальных волокон. Третий слой является продолжением слизистой оболочки барабанной полости.

К центру барабанной перепонки прикрепляется рукоятка молоточка. Это место называется пупок. Барабанная перепонка имеет 3 слоя только в наружной части. Во второй её части расслабленной она имеет только 2 слоя без среднего. Осмотр барабанной перепонки называется отоскопия. При осмотре здоровая перепонка имеет перламутрово-белый цвет, форму конуса, выпуклостью обращённой внутрь, т.е. в ухо.



Рисунок 2. Строение барабанной перепонки

3. Среднее ухо: барабанная полость, слуховые косточки, слуховые мышцы, слуховая труба, сосцевидный отросток. Строение, значение.

Среднее ухо состоит из:

Барабанной полости, в ней находятся слуховые косточки, слуховые мышцы и евстахиевы трубы;

Ячейки воздухоносного сосцевидного отростка;

Барабанная полость имеет вид шестигранника:

а/ верхняя стенка барабанной полости - крыша. У маленьких детей она имеет отверстие. Поэтому очень часто у детей гнойные отиты осложняются прорывом гноя на мозговые оболочки (гнойный менингит);

б/ нижняя стенка - дно, имеет отверстие, что может приводить к прорыву инфекции в кровь, в кровеносные русла. Так как нижняя стенка расположена над луковицей яремной вены. Это может привести к осложнению (сепсис онтогенный);

в/ передняя стенка. На передней стенке расположены отверстия - вход в евстахиеву трубу;

г/ задняя стенка. На ней расположен вход в пещеру сосцевидного отростка. Задней стеной барабанной полости является костная пластинка, которая отделяет средне ухо от внутреннего. На ней имеются 2 отверстия: одно из них называют овальное и круглое окно. Овальное окно закрыто стременем. Круглое окно прикрыто вторичной барабанной перепонкой. В области задней стенки проходит костный канал лицевого нерва. При воспалении среднего уха инфекция может переходить на этот нерв, вызывая неврит лицевого нерва, и как следствие перекосы лица.

Слуховые косточки соединены в определённой последовательности:

молоточек, наковальня, стремя.

Рисунок 3. Строение слуховых косточек

Рукоятка молоточка соединяется с центром барабанной перепонки. Головка молоточка соединяется с помощью сустава с телом наковальни. Подножная пластинка стремени вставляется в овальное окно, которое расположено на костной стенке внутреннего уха. Т.о. колебания барабанной перепонки через систему слуховых косточек передаются на внутреннее ухо. Слуховые косточки подвешены в барабанной полости при помощи связок. В полости среднего уха есть слуховые мышцы (их 2):

Мышца, натягивающая барабанную перепонку. Она принадлежит защитной функции. Она предохраняет барабанную перепонку от повреждения при действии сильных раздражителей. Это связано с тем, что при сокращении этой мышцы движение барабанной перепонки ограничено.

Мышца стременная. Она отвечает за подвижность стремени в овальном окне, что имеет большое значение для проведения звуков во внутреннее ухо. Установлено, что при блокаде овального окна развивается глухота.

Слуховая «евстахиева» труба. Это парное образование, которое соединяет носоглотку и полость среднего уха. Вход в евстахиеву трубу расположен на задней стенке барабанной полости. Евстахиева труба состоит из 2 отделов: костного (1/3 трубы), перепончатого (2/3 трубы). Костный отдел сообщается с барабанной полостью, а перепончатый - носоглоткой.

Длина слуховой трубы у взрослого человека = 2,5см, диаметр = 2-3мм. У детей она короче и шире чем у взрослого. Это связано с недоразвитием костной кости слуховой трубы. Поэтому у детей инфекция может легко переходить из барабанной перепонки на слизистую слуховой трубы и носоглотку, и наоборот, из носоглотки поступать в среднее ухо. Поэтому дети часто болеют отитом, источником которого является воспалительный процесс в носоглотке. Слуховая труба выполняет вентиляционную функцию. Установлено, что в спокойном состоянии её стенки прилегают друг к другу. Открытие труб происходит во время глотания, зевания. В этот момент воздух из носоглотки поступает в полость среднего уха - дренажная функция трубы. Она является той трубой, которая способствует оттоку гноя или другого ээксудата из полости среднего уха при воспалении. Если этого не происходит, возможен прорыв инфекции через крышу на мозговые оболочки, либо разрыв барабанной перепонки (прободение).

Рисунок 4 - Строение среднего уха.

Воздухоносные ячейки сосцевидного отростка.

Сосцевидный отросток находится на безволосом пространстве позади ушной раковины. На разрезе сосцевидный отросток напоминает «пористый шоколад». Самая большая воздухоносная ячейка сосцевидной кости называется пещера. Она имеется уже у новорождённого. Она выстлана слизистой оболочкой, которая является продолжением слизистой оболочки барабанной полости. Благодаря соединению пещеры и барабанной полости, инфекция может переходить из среднего уха в пещеру, а затем на костное вещество сосцевидного отростка, вызывая его воспаление - мастоидит.

4. Внутреннее ухо: костный и перепончатый лабиринт. Кортиев орган, строение, значение.

Внутреннее ухо (лабиринт) состоит из 2 частей: костного и перепончатого лабиринтов. Между ними находится перелимфотическое пространство, которое заполнено ушной жидкостью - перилимфой. Внутри перепончатого лабиринта также есть лимфа - эндолимфа. Т.о. во внутреннем ухе имеется 2 ушные жидкости, которые отличаются по составу и функциям. Перилимфа - по своему составу напоминает спинномозговую жидкость, но содержит при этом больше белка и ферментов. Её основная функция - это приведение в колебательное состояние основной мембраны. Эндолимфа - по своему составу похожа на внутриклеточную жидкость. В ней много растворимого кислорода, и поэтому она служит питательной средой для кортиевого органа.

Лабиринт имеет 3 отдела: преддверие, полукружные каналы, улитка. Преддверие и полукружные каналы относятся к вестибулярному аппарату. Улитка относится к слуховой сенсорной системе. Она по форме напоминает садовую улитку, образована спиральным каналом, который закруглён в 2,5 оборота. Диаметр канала уменьшается от основания к вершине улитки. В центре улитки находится спиральный гребень, вокруг которого закручена спиральная пластина. Эта пластина выдаётся в просвет спирального канала. На разрезе этот канал имеет следующее строение: двумя мембранами основной и вестибулярный аппарат делится на 3 части, в центре образуя улитковый вход. Верхняя мембрана называется вестибулярная, нижняя - основная. На основной мембране периферический рецептор уха - кортиев орган. Т.о кортиев орган расположен в улитковом ходу, на основной мембране.

Основная мембрана - это наиболее значимая стенка улиткового хода, состоит из множества натянутых струн, которые называются слуховые струны. Установлено, что длина струн и их степень натяжения зависит от того, на каком завитке улитки они находятся. Выделяют 3 завитка улитки:

основной (нижний), средний, верхний. Установлено, что в нижнем завитке находятся короткие и тугонатянутые струны. Они резонируют на высокие звуки. На верхнем завитке находятся длинные и слабонатянутые струны. Они резонируют на низкие звуки.

Кортиев орган является периферическим рецептором слуха. Состоит из 2 видов клеток:

1.Опорные клетки (столбовые) - имеют вспомогательное значение.

2.Волосковые (наружные и внутренние). В них происходит трансформация звуковой энергии в физиологический процесс нервного возбуждения, т.е. образование нервных импульсов.

Опорные клетки расположены под углом друг к другу, образуя тоннель. В нём, в один ряд, располагаются внутренние волосковые клетки. По своей функции эти клетки являются вторичночувствующими. Их головной конец закруглён и имеет волоски. Сверху волоски покрывает мембрана, которая называется покровной. Установлено, что при смещении покровной мембраны относительно волосков, возникают ионные токи.

Рисунок 5 – Строение внутреннего уха.

Звуковые волны — это механические колебания среды различной частоты и амплитуды. Эти колебания мы воспринимаем как звуки, отличающиеся между собой по высоте и громкости.

Наш слуховой анализатор способен воспринимать звуковые колебания в диапазоне частот от 16 Гц до 20000 Гц. Образец низкого звука (125 Гц) — гудение холодильника, а высокого звука (5000 Гц) — комариный пищания. Частоты ниже 16 Гц (инфразвук) и выше 20000 Гц (ультразвук) не вызывают у нас звуковых ощущений. Однако и инфразвук, и ультразвук влияют на наш организм. Интенсивность звуковых волн мы воспринимаем как громкость звуков. Единицей их измерения является бел (децибел): громкость тихого шепота равен 10 децибел, громкого крика — 80 — 90 децибел, а звук в 130 децибел вызывает сильную боль в ушах.

На барабанной перепонке размещается воздушная полость — среднее ухо . Оно соединено с помощью эвстахиевой трубы с глоткой, а через нее — с полостью рта. Эти каналы соединяют внешнюю среду со средним ухом и является предохранителем, защищающим его от травм. Обычно вход в евстахиевой трубы закрыт, он открывается только при глотании. Если среднее ухо испытывает чрезмерного давления вследствие действий звуковых волн, достаточно открыть рот и сделать глоток: давление в среднем ухе сравнится с атмосферным.

Среднее ухо — это усилитель, который может изменять амплитуду звуковых волн, которые передаются с барабанной перепонки к внутреннему уху. Как это происходит? От барабанной перепонки тянется цепочка маленьких косточек, подвижно соединенных между собой: молоточек, наковальня и стремя. Рукоятка молоточка прикреплена к барабанной перепонке, а стремя упирается в другую мембрану. Это перепонка отверстия, которое называют овальным окном, — она ​​границей между средним и внутренним ухом.

Колебания барабанной перепонки вызывают движение слуховых косточек, которые толкают мембрану овального окна, и она начинает колебаться. По площади эта мембрана значительно меньше, чем барабанная перепонка, и поэтому она колеблется с большей амплитудой. Усиленные колебания мембраны овального окна передаются к внутреннему уху.

Внутреннее ухо располагается в глубине височной кости черепа. Именно здесь в специальном устройстве, называемом улиткой, расположенный рецепторный аппарат слухового анализатора. Улитка — костный канал, внутри которого размещаются две продольные мембраны. Нижняя (базальная) мембрана образована плотной соединительной тканью, а верхняя — тоненькой однослойной. Мембраны разделяют канал улитки на три части — верхний, средний и нижний каналы. Нижний и верхний канал на верхушке завитки сочетаются между собой, а средний является замкнутой полостью. Каналы заполнены жидкостями: нижний и верхний — перилимфой, а средний — эндолимфой, что вязкая по перилимфу. Верхний канал начинается от овального окна, а нижний — заканчивается округлым окном, которое расположено под овальным. Колебания мембраны овального окна передаются пе-рилимфы, в ней возникают волны. Они распространяются верхним и нижним каналами, достигая мембраны округлого окна.

Строение рецепторного аппарата слухового анализатора

К каким последствиям приводит перемещения волн в перилимфе? Чтобы выяснить это, рассмотрим строение рецепторного аппарата слухового анализатора. На базальной мембране среднего канала по всей его длине расположен так называемый кортоев орган — аппарат, содержащие рецепторы и опорные клетки. На каждой рецепторной клетке содержится до 70 выростов — волосков. Над волосковыми клетками расположена покровная мембрана, контактирует с волосками. Кортиева орган разделен на участки, каждый из которых отвечает за восприятие волн определенной частоты.

Жидкости, содержащиеся в каналах завитки, является передаточным звеном, которая доносит энергию звуковых колебаний в покровной мембраны кортиива органа. Когда волна перемещается перилимфой в верхнем канале, тоненькая мембрана между ним и средним каналом прогибается, действует на эндолимфу, а и прижимает покровную мембрану в волосковых клеток. В ответ на механическое воздействие — нажатие на волоски — в рецепторах формируются сигналы, которые они передают на дендриты чувствительных нейронов. В этих нейронах возникают нервные импульсы, которые по аксонам, объединяемых в слуховой нерв, направляются в центральный отдел звукового анализатора. Высота звука, который мы воспринимаем, определяется тем, с какого участка кортиева органа поступил сигнал.

Центральный отдел слухового анализатора

Нервные импульсы по чувствительным нейронам слуховых нервов поступают в многочисленных ядер ствола головного мозга, где происходит первичная обработка сигналов, далее — к таламуса, а из него — в височной области коры (слуховой зоны). Здесь при участии ассоциативных зон коры происходит распознавание слуховых стимулов, а у нас возникают звуковые ощущения. На всех уровнях обработки сигнала являются ведущие пути, благодаря которым происходит постоянный обмен информацией между симметрично расположенными ядрами, которые относятся к центральным структурам левого и правого уха.