Типы тригонометрических уравнений и методы их решения. Более сложные тригонометрические уравнения

Концепция решения тригонометрических уравнений.

  • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
  • Решение основных тригонометрических уравнений.

    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  • Преобразования, используемые при решении тригонометрических уравнений.

    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.
    • Нахождение углов по известным значениям функций.

      • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
      • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Отложите решение на единичной окружности.

      • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
      • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
      • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Методы решения тригонометрических уравнений.

      • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
        • Метод 1.
      • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.
      • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
      • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
      • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
      • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
        • Метод 2.
      • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
      • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
      • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Пример 10. tg x + 2 tg^2 x = ctg x + 2
      • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
  • Требует знания основных формул тригонометрии - сумму квадратов синуса и косинуса, выражение тангенса через синус и косинус и другие. Для тех, кто их забыл или не знает рекомендуем прочитать статью " ".
    Итак, основные тригонометрические формулы мы знаем, пришло время использовать их на практике. Решение тригонометрических уравнений при правильном подходе – довольно увлекательное занятие, как, например, собрать кубик Рубика.

    Исходя из самого названия видно, что тригонометрическое уравнение – это уравнение, в котором неизвестное находится под знаком тригонометрической функции.
    Существуют так называемые простейшие тригонометрические уравнения. Вот как они выглядят: sinх = а, cos x = a, tg x = a. Рассмотрим, как решить такие тригонометрические уравнения , для наглядности будем использовать уже знакомый тригонометрический круг.

    sinх = а

    cos x = a

    tg x = a

    cot x = a

    Любое тригонометрическое уравнение решается в два этапа: приводим уравнение к простейшему виду и далее решаем его, как простейшее тригонометрическое уравнение.
    Существует 7 основных методов, с помощью которых решаются тригонометрические уравнения.

    1. Метод замены переменной и подстановки

    2. Решить уравнение 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

      Используя формулы приведения получим:

      2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

      Заменим cos(x + /6) на y для упрощения и получаем обычное квадратное уравнение:

      2y 2 – 3y + 1 + 0

      Корни которого y 1 = 1, y 2 = 1/2

      Теперь идем в обратном порядке

      Подставляем найденные значения y и получаем два варианта ответа:

    3. Решение тригонометрических уравнений через разложение на множители

    4. Как решить уравнение sin x + cos x = 1 ?

      Перенесем все влево, чтобы справа остался 0:

      sin x + cos x – 1 = 0

      Воспользуемся вышерассмотренными тождествами для упрощения уравнения:

      sin x - 2 sin 2 (x/2) = 0

      Делаем разложение на множители:

      2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

      2sin(x/2) * = 0

      Получаем два уравнения

    5. Приведение к однородному уравнению

    6. Уравнение является однородным относительно синуса и косинуса, если все его члены относительно синуса и косинуса одной и той же степени одного и того же угла. Для решения однородного уравнения, поступают следующим образом:

      а) переносят все его члены в левую часть;

      б) выносят все общие множители за скобки;

      в) приравнивают все множители и скобки к 0;

      г) в скобках получено однородное уравнение меньшей степени, его в свою очередь делят на синус или косинус в старшей степени;

      д) решают полученное уравнение относительно tg.

      Решить уравнение 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

      Воспользуемся формулой sin 2 x + cos 2 x = 1 и избавимся от открытой двойки справа:

      3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

      sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

      Делим на cos x:

      tg 2 x + 4 tg x + 3 = 0

      Заменяем tg x на y и получаем квадратное уравнение:

      y 2 + 4y +3 = 0, корни которого y 1 =1, y 2 = 3

      Отсюда находим два решения исходного уравнения:

      x 2 = arctg 3 + k

    7. Решение уравнений, через переход к половинному углу

    8. Решить уравнение 3sin x – 5cos x = 7

      Переходим к x/2:

      6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

      Пререносим все влево:

      2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

      Делим на cos(x/2):

      tg 2 (x/2) – 3tg(x/2) + 6 = 0

    9. Введение вспомогательного угла

    10. Для рассмотрения возьмем уравнение вида: a sin x + b cos x = c ,

      где a, b, c – некоторые произвольные коэффициенты, а x – неизвестное.

      Обе части уравнения разделим на :

      Теперь коэффициенты уравнения согласно тригонометрическим формулам обладают свойствами sin и cos, а именно: их модуль не более 1 и сумма квадратов = 1. Обозначим их соответственно как cos и sin , где – это и есть так называемый вспомогательный угол. Тогда уравнение примет вид:

      cos * sin x + sin * cos x = С

      или sin(x + ) = C

      Решением этого простейшего тригонометрического уравнения будет

      х = (-1) k * arcsin С - + k, где

      Следует отметить, что обозначения cos и sin взаимозаменяемые.

      Решить уравнение sin 3x – cos 3x = 1

      В этом уравнении коэффициенты:

      а = , b = -1, поэтому делим обе части на = 2

    Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

    Дополнительные материалы
    Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

    Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
    Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
    Программная среда "1С: Математический конструктор 6.1"

    Что будем изучать:
    1. Что такое тригонометрические уравнения?

    3. Два основных метода решения тригонометрических уравнений.
    4. Однородные тригонометрические уравнения.
    5. Примеры.

    Что такое тригонометрические уравнения?

    Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.

    Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.

    Повторим вид решения простейших тригонометрических уравнений:

    1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:

    X= ± arccos(a) + 2πk

    2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:

    3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk

    5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk

    Для всех формул k- целое число

    Простейшие тригонометрические уравнения имеют вид: Т(kx+m)=a, T- какая либо тригонометрическая функция.

    Пример.

    Решить уравнения: а) sin(3x)= √3/2

    Решение:

    А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:

    Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.

    Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.

    Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,

    Тогда x= ((-1)^n)×π/9+ πn/3

    Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.

    Ещё примеры тригонометрических уравнений.

    Решить уравнения: а) cos(x/5)=1 б)tg(3x- π/3)= √3

    Решение:

    А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:

    X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk

    Ответ: x=5πk, где k – целое число.

    Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3

    3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

    Ответ: x=2π/9 + πk/3, где k – целое число.

    Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .

    Решение:

    Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk

    4x= ± π/4 + 2πk;

    X= ± π/16+ πk/2;

    Теперь давайте посмотрим какие корни попадут на наш отрезок. При k При k=0, x= π/16, мы попали в заданный отрезок .
    При к=1, x= π/16+ π/2=9π/16, опять попали.
    При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.

    Ответ: x= π/16, x= 9π/16

    Два основных метода решения.

    Мы рассмотрели простейшие тригонометрические уравнения, но существуют и более сложные. Для их решения применяют метод ввода новой переменной и метод разложения на множители. Давайте рассмотрим примеры.

    Решим уравнение:

    Решение:
    Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).

    В результате замены получим: t 2 + 2t -1 = 0

    Найдем корни квадратного уравнения: t=-1 и t=1/3

    Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.

    X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

    Ответ: x= -π/4+πk; x=arctg(1/3) + πk.

    Пример решения уравнения

    Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0

    Решение:

    Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1

    Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0

    2 cos 2 (x) - 3 cos(x) -2 = 0

    Введем замену t=cos(x): 2t 2 -3t - 2 = 0

    Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2

    Тогда cos(x)=2 и cos(x)=-1/2.

    Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.

    Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

    Ответ: x= ±2π/3 + 2πk

    Однородные тригонометрические уравнения.

    Определение: Уравнение вида a sin(x)+b cos(x) называются однородными тригонометрическими уравнениями первой степени.

    Уравнения вида

    однородными тригонометрическими уравнениями второй степени.

    Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x): Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
    Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.

    Решить уравнение:
    Пример: cos 2 (x) + sin(x) cos(x) = 0

    Решение:

    Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0

    Тогда нам надо решить два уравнения:

    Cos(x)=0 и cos(x)+sin(x)=0

    Cos(x)=0 при x= π/2 + πk;

    Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):

    1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

    Ответ: x= π/2 + πk и x= -π/4+πk

    Как решать однородные тригонометрические уравнения второй степени?
    Ребята, придерживайтесь этих правил всегда!

    1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде

    2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:


    Делаем замену переменной t=tg(x) получаем уравнение:

    Решить пример №:3

    Решить уравнение:
    Решение:

    Разделим обе части уравнения на косинус квадрат:

    Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0

    Найдем корни квадратного уравнения: t=-3 и t=1

    Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

    Tg(x)=1 => x= π/4+ πk

    Ответ: x=-arctg(3) + πk и x= π/4+ πk

    Решить пример №:4

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk

    Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk

    Решить пример №:5

    Решить уравнение:

    Решение:
    Преобразуем наше выражение:


    Введем замену tg(2x)=t:2 2 - 5t + 2 = 0

    Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2

    Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
    2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

    2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

    Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2

    Задачи для самостоятельного решения.

    1) Решить уравнение

    А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7

    2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].

    3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0

    4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0

    5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

    6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

    Более сложные тригонометрические уравнения

    Уравнения

    sin х = а ,
    cos х = а ,
    tg х = а ,
    ctg х = а

    являются простейшими тригонометрическими уравнениями. В этом параграфе на конкретных примерах мы рассмотрим более сложные тригонометрические уравнения. Их решение, как правило, сводится к решению простейших тригонометрических уравнений.

    Пример 1 . Решить уравнение

    sin 2х = cos х sin 2x .

    Перенося все члены этого уравнения в левую часть и разлагая полученное выражение на множители, получаем:

    sin 2х (1 - cos х ) = 0.

    Произведение двух выражений тогда и только тогда равно нулю, когда хотя бы один из сомножителей равен нулю, а другой принимает любое числовое значение, лишь бы он был определен.

    Если sin 2х = 0 , то 2х = nπ ; х = π / 2 n .

    Если же 1 - cos х = 0 , то cos х = 1; х = 2k π .

    Итак, мы получили две группы корней: х = π / 2 n ; х = 2k π . Втoрая группа корней, очевидно, содержится в первой, поскольку при n = 4k выражение х = π / 2 n обращается в
    х = 2k π .

    Поэтому ответ можно записать одной формулой: х = π / 2 n , где n -любое целое число.

    Заметим, что данное уравнение нельзя было решать путем сокращения на sin 2x . Действительно, после сокращения мы получили бы 1 - cos х = 0, откуда х = 2kπ . Таким образом, мы потеряли бы некоторые корни, например π / 2 , π , 3π / 2 .

    П р и м е р 2. Решить уравнение

    Дробь равна нулю лишь в том случае, когда ее числитель равен нулю.
    Поэтому sin 2х = 0 , откуда 2х = nπ ; х = π / 2 n .

    Из этих значений х нужно выбросить как посторонние те значения, при которых sin х обращается в нуль (дроби с нулевыми знаменателями не имеют смысла: деление на нуль не определено). Такими значениями являются числа, кратные π . В формуле
    х = π / 2 n они получаются при четных n . Следовательно, корнями данного уравнения будут числа

    х = π / 2 (2k + 1),

    где k - любое целое число.

    Пример 3 . Решить уравнение

    2 sin 2 х + 7 cos x - 5 = 0.

    Выразим sin 2 х через cos x : sin 2 х = 1 - cos 2 x . Тогда данное уравнение можно переписать в виде

    2 (1 - cos 2 x ) + 7 cos x - 5 = 0 , или

    2cos 2 x - 7 cos x + 3 = 0.

    Обозначая cos x через у , мы приходим к квадратному уравнению

    2у 2 - 7у + 3 = 0,

    корнями которого являются числа 1 / 2 и 3. Значит, либо cos x = 1 / 2 , либо cos х = 3. Однако последнее невозможно, поскольку косинус любого угла по абсолютной величине не превышает 1.

    Остается признать, что cos x = 1 / 2 , откуда

    x = ± 60° + 360° n .

    Пример 4 . Решить уравнение

    2 sin х + 3cos x = 6.

    Поскольку sin x и cos x по абсолютной величине не превышают 1, то выражение
    2 sin х + 3cos x не может принимать значений, больших, чем 5 . Поэтому данное уравнение не имеет корней.

    Пример 5 . Решить уравнение

    sin х + cos x = 1

    Возвысив обе части данного уравнения в квадрат, мы получим:

    sin 2 х + 2 sin x cos x + cos 2 x = 1,

    но sin 2 х + cos 2 x = 1 . Поэтому 2 sin x cos x = 0 . Если sin x = 0 , то х = n π ; если же
    cos x
    , то х = π / 2 + k π . Эти две группы решений можно записать одной формулой:

    х = π / 2 n

    Поскольку обе части данного уравнения мы возводили в квадрат,то не исключена возможность, что среди полученных нами корней имеются посторонние. Вот почему в этом примере, в отличие от всех предыдущих, необходимо сделать проверку. Все значения

    х = π / 2 n можно разбить на 4 группы

    1) х = 2k π .

    (n = 4k)

    2) х = π / 2 + 2k π .

    (n = 4k + 1)

    3) х = π + 2k π .

    (n = 4k + 2)

    4) х = 3π / 2 + 2k π .

    (n = 4k + 3)

    При х = 2kπ sin x + cos x = 0 + 1 = 1. Следовательно, х = 2kπ - корни данного уравнения.

    При х = π / 2 + 2kπ . sin x + cos x = 1 + 0 = 1 Значит, х = π / 2 + 2kπ - также корни данного уравнения.

    При х = π + 2kπ sin x + cos x = 0 - 1 = - 1. Поэтому значения х = π + 2kπ не являются корнями данного уравнения. Аналогично показывается, что х = 3π / 2 + 2kπ . не являются корнями.

    Таким образом, данное уравнение имеет следующие корни: х = 2kπ и х = π / 2 + 2mπ ., где k и m - любые целые числа.

    При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.

    Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.

    Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.

    По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.

    Чтобы решить тригонометрическое уравнение, надо попытаться:

    1. привести все функции входящие в уравнение к «одинаковым углам»;
    2. привести уравнение к «одинаковым функциям»;
    3. разложить левую часть уравнения на множители и т.п.

    Рассмотрим основные методы решения тригонометрических уравнений.

    I. Приведение к простейшим тригонометрическим уравнениям

    Схема решения

    Шаг 1. Выразить тригонометрическую функцию через известные компоненты.

    Шаг 2. Найти аргумент функции по формулам:

    cos x = a; x = ±arccos a + 2πn, n ЄZ.

    sin x = a; x = (-1) n arcsin a + πn, n Є Z.

    tg x = a; x = arctg a + πn, n Є Z.

    ctg x = a; x = arcctg a + πn, n Є Z.

    Шаг 3. Найти неизвестную переменную.

    Пример.

    2 cos(3x – π/4) = -√2.

    Решение.

    1) cos(3x – π/4) = -√2/2.

    2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

    3x – π/4 = ±3π/4 + 2πn, n Є Z.

    3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

    x = ±3π/12 + π/12 + 2πn/3, n Є Z;

    x = ±π/4 + π/12 + 2πn/3, n Є Z.

    Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.

    II. Замена переменной

    Схема решения

    Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.

    Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).

    Шаг 3. Записать и решить полученное алгебраическое уравнение.

    Шаг 4. Сделать обратную замену.

    Шаг 5. Решить простейшее тригонометрическое уравнение.

    Пример.

    2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

    Решение.

    1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

    2sin 2 (x/2) + 5sin (x/2) + 3 = 0.

    2) Пусть sin (x/2) = t, где |t| ≤ 1.

    3) 2t 2 + 5t + 3 = 0;

    t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.

    4) sin (x/2) = 1.

    5) x/2 = π/2 + 2πn, n Є Z;

    x = π + 4πn, n Є Z.

    Ответ: x = π + 4πn, n Є Z.

    III. Метод понижения порядка уравнения

    Схема решения

    Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:

    sin 2 x = 1/2 · (1 – cos 2x);

    cos 2 x = 1/2 · (1 + cos 2x);

    tg 2 x = (1 – cos 2x) / (1 + cos 2x).

    Шаг 2. Решить полученное уравнение с помощью методов I и II.

    Пример.

    cos 2x + cos 2 x = 5/4.

    Решение.

    1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

    2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

    3/2 · cos 2x = 3/4;

    2x = ±π/3 + 2πn, n Є Z;

    x = ±π/6 + πn, n Є Z.

    Ответ: x = ±π/6 + πn, n Є Z.

    IV. Однородные уравнения

    Схема решения

    Шаг 1. Привести данное уравнение к виду

    a) a sin x + b cos x = 0 (однородное уравнение первой степени)

    или к виду

    б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).

    Шаг 2. Разделить обе части уравнения на

    а) cos x ≠ 0;

    б) cos 2 x ≠ 0;

    и получить уравнение относительно tg x:

    а) a tg x + b = 0;

    б) a tg 2 x + b arctg x + c = 0.

    Шаг 3. Решить уравнение известными способами.

    Пример.

    5sin 2 x + 3sin x · cos x – 4 = 0.

    Решение.

    1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

    5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

    sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

    2) tg 2 x + 3tg x – 4 = 0.

    3) Пусть tg x = t, тогда

    t 2 + 3t – 4 = 0;

    t = 1 или t = -4, значит

    tg x = 1 или tg x = -4.

    Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.

    Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

    V. Метод преобразования уравнения с помощью тригонометрических формул

    Схема решения

    Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.

    Шаг 2. Решить полученное уравнение известными методами.

    Пример.

    sin x + sin 2x + sin 3x = 0.

    Решение.

    1) (sin x + sin 3x) + sin 2x = 0;

    2sin 2x · cos x + sin 2x = 0.

    2) sin 2x · (2cos x + 1) = 0;

    sin 2x = 0 или 2cos x + 1 = 0;

    Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.

    Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.

    В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

    Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

    Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.

    С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.

    Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.

    Остались вопросы? Не знаете, как решать тригонометрические уравнения?
    Чтобы получить помощь репетитора – зарегистрируйтесь .
    Первый урок – бесплатно!

    сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.