Потенциал действия мышечной клетки. Механизм развития потенциала действия

  • Лекция 3. Механизмы проведения возбуждения
  • 3.2. Нервно-мышечный синапс: строение, механизм проведения возбуждения, особенности проведения возбуждения в синапсе по сравнению с нервным волокном.
  • Лекция 4. Физиология мышечного сокращения
  • Лекция 5. Общая физиология центральной нервной системы
  • 5.3. Классификация синапсов цнс, медиаторы синапсов цнс и их функциональное значение. Свойства синапсов цнс.
  • Лекция 6. Структура цнс. Свойства нервных центров.
  • 6. 1. Понятие о нервном центре. Свойства нервных центров.
  • 6.2. Методы исследования функций цнс.
  • Лекция 7. Механизмы и способы торможения в цнс. Координационная деятельность цнс.
  • 7.1. Процессы торможения в цнс: механизм постсинаптического и пресинаптического торможений, посттетаническое и пессимальное торможение. Значение торможения.
  • 7.2. Координационная деятельность цнс: понятие о координации, принципы координационной деятельности цнс.
  • Лекция 8. Физиология спинного мозга и мозгового ствола.
  • 8.1. Роль спинного мозга в регуляции функций организма: вегетативные и соматические центры и их значение.
  • 8.2. Продолговатый мозг и мост: центры и соответствующие им рефлексы, их отличия от рефлексов спинного мозга.
  • 8.3 Средний мозг: основные структуры и их функции, статические и статокинетические рефлексы.
  • Лекция 9. Физиология ретикулярной формации, промежуточного и заднего мозга.
  • 9.2. Мозжечок: афферентные и эфферентные связи, роль мозжечка в регуляции тонуса мышц в обеспечении двигательной активности. Симптомы поражения мозжечка.
  • 9.3. Промежуточный мозг: структуры и их функции. Роль таламуса и гипоталамуса в регуляции гомеостаза организма и осуществлении сенсорной функции.
  • Лекция 10. Физиология переднего мозга. Физиология вегетативной нервной системы.
  • 10.1. Мозговые системы произвольных и непроизвольных движений (Пирамидная и экстрапирамидная системы): главные структуры, функции.
  • 10.2. Лимбическая система: структуры и функции.
  • 10.3. Функции новой коры, функциональное значение соматосенсорных и моторных зон коры больших полушарий.
  • Лекция 11. Физиология эндокринной системы и нейроэндокринные отношения.
  • 11. 1. Эндокринная система и гормоны. Функциональное значение гормонов.
  • 11.2. Общие принципы регуляции функций эндокринных желез. Гипоталамо-гипофизарная система. Функции аденогипофиза. Функции нейрогипофиза
  • 11.4. Щитовидная железа: регуляция образования и транспорт иодированных гормонов, роль иодированных гормонов и кальцитонина. Функции паращитовидных желез.
  • Лекция 12. Физиология системы крови. Физико-химические свойства крови.
  • 12. 1. Кровь как составная часть внутренней среды организма. Понятие о системе крови (г.Ф. Ланг). Функции крови. Количество крови в организме и методы его определения.
  • 12. 2. Состав крови. Гематокрит. Состав плазмы. Основные физико-химические константы крови.
  • Лекция 13. Физиология гемостаза.
  • 13.1. Свертывание крови: понятие, ферментативная теория (Шмидт, Моравиц), факторы свертывания, роль тромбоцитов.
  • Лекция 14. Антигенные свойства крови. Основы трансфузиологии
  • 14.2. Группы крови систем Rh: открытие, антигенный состав, значение для клиники. Краткая характеристика других систем антигенов (m, n, s, p и др.)
  • Лекция 15. Клеточные элементы крови
  • 15.2. Гемоглобин: свойства, соединения гемоглобина, количество Нв, методы его определения. Цветовой показатель. Метаболизм гемоглобина.
  • 15.3. Лейкоциты: количество, методы подсчета, лейкоцитарная формула, функции различных видов лейкоцитов. Физиологический лейкоцитоз: понятие, виды. Нервная и гуморальная регуляция лейкопоэза.
  • 15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
  • Лекция 16. Физиология сердечной деятельности
  • Лекция 17. Внешние проявления работы сердца, способы их регистрации. Функциональные показатели деятельности ердца.
  • Лекция 18. Регуляция работы сердца.
  • 18.2. Интракардиальная регуляция деятельности сердца: миогенная регуляция, внутрисердечная нервная система.
  • 18.3. Рефлекторные механизмы регуляции сердечной деятельности. Корковые влияния. Гуморальные механизмы регуляции работы сердца.
  • Лекция 19. Законы движения крови по сосудам. Основные гемодинамические показатели
  • Лекция 20. Особенности движения крови в разных отделах сосудистого русла.
  • 20.3. Давление крови в артериях: виды, показатели, факторы, их определяющие, кривая артериального давления.
  • 21.1. Нервная регуляция сосудистого тонуса.
  • 21.2. Базальный тонус и его компоненты, доля участия его в общем тонусе сосудов. Гуморальная регуляция сосудистого тонуса. Ренин-антиотезиновая система. Локальные регуляторные механизмы
  • 21. 4. Особенности регионального кровообращения: коронарного, легочного, мозгового, печеночного, почечного, кожного.
  • 22.1. Дыхание: этапы дыхательного процесса. Понятие о внешнем дыхании. Функциональное значение легкого, воздухоносных путей и грудной клетки в процессе дыхания. Негазообменные функции легких.
  • 22. 2. Механизм вдоха и выдоха Отрицательное давление в плевральной щели. Понятие об отрицательном давлении, его величина, происхождение, значение.
  • 22. 3. Вентиляция легких: легочные объемы и емкости
  • Лекция 23. Механизмы газообмена
  • 23. 2. Транспорт о2и со2кровью. Газообмен между кровью и тканями.
  • Лекция 24. Регуляция дыхания
  • 24. 1. Структурно-функциональная характеристика дыхательного центра. Роль гуморальных факторов в регуляциИ интенсивности дыхания. Рефлекторная саморегуляция вдоха и выдоха.
  • 24. 2 Особенности дыхания и его регуляция при мышечной работе, при пониженном и повышенном атмосферном давлении. Гипоксия и ее виды. Искусственное дыхание. Гипербарическая оксигенация.
  • 24.3. Характеристика функциональной системы, поддерживающей постоянство газового состава крови и ее схема.
  • Лекция 25. Общая характеристика пищеварительной системы. Пищеварение в полости рта.
  • Лекция 26. Пищеварение в желудке и 12-п. Кишке.
  • 26.3. Печень: ее роль в пищеварении (состав желчи, ее значение, регуляция желчеобразования и желчевыделения), не пищеварительные функции печени.
  • Лекция 27. Пищеварение в тонкой и толстой кишке. Всасывание. Голод и насыщение.
  • 27. 1. Пищеварение в тонкой кишке: количество, состав пищеварительного сока тонкой кишки, регуляция ее секреции, полостное и мембранное пищеварение. Виды сокращений тонкой кишки и их регуляция.
  • 27.3. Всасывание в желудочно-кишечном тракте: интенсивность всасывания в различных отделах, механизмы всасывания и опыты, их доказывающие; регуляция всасывания.
  • 27.4. Физиологические основы голода и насыщения. Периодическая деятельность желудочно-кишечного тракта. Механизмы активного выбора пищи и биологическое значение этого факта.
  • Лекция 28. Метаболические основы физиологических функций.
  • 28. 1. Значение Обмена веществ. Обмен белков, жиров и углеводов. Витамины и их роль в организме.
  • 28. 2. Особенности и регуляция водно-солевого обмена.
  • 28. 4. Принципы исследования прихода и расхода энергии организмом.
  • 28.5. Питание: физиологические нормы питания, основные требования к составлению пищевого рациона и режиму приема пищи,
  • Лекция 29. Терморегуляция
  • 29. 1. Терморегуляция и ее виды, физические и физиологические механизмы теплопродукции и теплоотдачи.
  • 29. 2. Механизмы Терморегуляции. Характеристика функциональной системы, поддерживающей постоянство температуры внутренней среды организма и ее схема. Понятие о гипотермии и гипертермии.
  • Лекция 31. Гомеостатические функции почек.
  • Лекция 32. Сенсорные системы. Физиология анализаторов
  • 32. 1. Рецептор: понятие, функция, классификация рецепторов, свойства и их особенности, механизм возбуждения рецепторов.
  • 32.2. Анализаторы (и.П. Павлов): понятие, классификация анализаторов, три отдела анализаторов и их значение, принципы построения корковых отделов анализаторов.
  • 32. 3. Кодирование информации в анализаторах.
  • Лекция 33. Физиологические особенности отдельных анализаторных систем.
  • 33. 1. Зрительный анализатор
  • 33. 2. Слуховой анализатор. Механизм восприятия звука.
  • 33. 3. Вестибулярный анализатор.
  • 33.4. Кожно-кинестетический анализатор.
  • 33.5. Обонятельный и вкусовой анализаторы.
  • 33. 6. Внутренний (висцеральный) анализатор.
  • Лекция 34. Физиология высшей нервной деятельности.
  • 34. 1. Понятие о высшей нервной деятельности. Классификация условных рефлексов и их характеристика. Методы изучения внд.
  • 34. 2. Механизм образования условных рефлексов. “Замыкание” временной связи (и.П. Павлов, э.А. Асратян, п.К. Анохин).
  • 34. 4. Аналитико-синтетическая деятельность коры больших полушарий.
  • 34.5. Индивидуальные особенности высшей нервной деятельности. Типы внд.
  • Лекция 35. Особености внд человека. Физиологические механизмы сна.
  • 35.1. Особенности внд человека. Понятие о первой и второй сигнальной системах человека.
  • 35. 2. Физиологические МеХанизмы сна.
  • Лекция 36. Физиологические механизмы памяти.
  • 36.1. Физиологические механизмы усвоения и сохранения информации. Виды и механизмы памяти.
  • Лекция 37. Эмоции и мотивации. Физиологические механизмы целенаправленного поведения
  • 37.1. Эмоции: причины возникновения, значение. Информационная теория эмоций п.С. Симонова и теория эмоциональных состояний г.И. Косицкого.
  • 37.2. Функциональная система целенаправленного поведения (п.К. Анохин), ее центральные механизмы. Мотивации и их виды.
  • Лекция 38. Защитные функции организма. Ноцицептивная система.
  • 38.1. Ноцицепция: биологическое значение боли, ноцицептивная и антиноцицептивная системы.
  • Лекция 39. Физиологические механизмы трудовой деятельности и приспособления организма к изменившимся условиям.
  • 39.1. Физиологические основы трудовой деятельности. Особенности физического и умственного труда. Особенности труда в условиях современного производства, утомление и активный отдых.
  • 39. 2. Aдаптация организма к физическим, биологическим и социальным факторам. Виды адаптации. Особенности адаптации человека к климатическим факторам обитания.
  • 39.3. Биологические ритмы и их значение в деятельности человека и его адаптации к экстремальным условиям.
  • 39. 4. Стресс. Механизм развития общего адаптационного синдрома.
  • Лекция 40. Физиология репродукции. Плодо-материнские отношения и функциональная система мать-плод (фсмп).
  • 2.2. Потенциал действия: фазы потенциала действия, механизм возникновения. Восстановительный период. Явление аккомодации возбудимой ткани.

    Потенциал действия . Если участок нервного или мышечного волокна подвергнуть действию достаточно сильного раздражителя (например, толчка электрического тока), в этом участке возникает возбуждение, одним из наиболее важных проявлений которого служит быстрое колебание МП, называемое потенциалом действия (ПД)

    Причиной возникновения ПД является изменение ионной проницаемости мембраны. В состоянии покоя, как уже говорилось, проницаемость мембраны для К + превышает натриевую проницаемость. Вследствие этого поток положительно заряженных ионов из протоплазмы наружу превышает противоположный поток Na + . Поэтому мембрана в покое снаружи заряжена положительно.

    При действии на клетку раздражителя проницаемость мембраны для ионов Na+ резко повышается, и в конечном итоге становится примерно в 20 раз больше проницаемости для К + . Поэтому поток ионов Na + в клетку начинает значительно превышать направленный наружу поток К + . Ток Na + достигает величины +150 мв. Одновременно несколько уменьшается выход К + из клетки. Все это приводит к извращению (реверсии) МП, и наружная поверхность мембраны становится заряженной электро отрицательно по отношению к внутренней поверхности. Указанный сдвиг и регистрируется в виде восходящей ветви пика ПД (фаза деполяризации).

    При внутриклеточном отведении можно обнаружить, что поверхность возбужденного участка на очень короткий интервал, измеряемый тысячными долями секунды, становится заряженным электроотрицательно по отношению к соседнему, покоящемуся участку, т.е. при возбуждении происходит т.н. "перезарядка мембраны". Точные измерения показали, что амплитуда ПД на 30-50 мв превышает величину МП. Причина этого состоит в том, что при возбуждении происходит не просто исчезновение ПП, а возникает разность потенциалов обратного знака, в результате чего наружная поверхность мембраны становится заряженной отрицательно по отношению у ее внутренней стороне.

    Потенциал действия протекает фазно. Временной ход потенциала действия включает четыре последовательных этапа: локальный ответ, деполяризацию, реполяризацию и следовые потенциалы (рис. 2). В ПД принято различать его пик (т.н. спайк - spike) и следовые потенциалы. Пик ПД имеет восходящую и нисходящую фазы. Перед восходящей фазой регистрируется более или менее выраженный т.н. местный потенциал, или локальный ответ. Поскольку во время восходящей фазы исчезает исходная поляризация мембраны, ее называют фазой деполяризации; соответственно нисходящую фазу, в течение которой поляризация мембраны возвращается к исходному уровню, называется фазой реполяризации. Продолжительность пика ПД в нервных и скелетных мышечных волокнах варьирует в пределах 0,4-5,0 мсек. При этом фаза реполяризации всегда продолжительнее.

    Рис. 2. Фазы и временной ход потенциала действия.

    Кроме пика, в ПД различают два следовых потенциала - следовую деполяризацию (следовой отрица-тельный потенциал) и следовую гиперполяризацию (следовой положи-тельный потенциал. Амплитуда этих потенциалов не превышает нескольких милливольт, а длительность варьирует от нескольких десятков до сотен миллисекунд. Следовые потенциалы связаны с восстановительными процессами, развивающимися в мышцах и нерве после окончания возбуждения.

    Промежуток времени, в течение которого сохраняется активное состояние в виде ПД, неодинаков в разных возбудимых структурах. В нейронах он составляет около 1 мс, в волокнах скелетных мышц – 10 мс, в миокарде достигает 200–250 мс.

    Левое крыло графической записи ПД, отражающее изменение потенциала в электроположительную сторону называется деполяризацией. Область электроположительности носит название овершута, правое крыло ПД, свидетельствующее о восстановлении исходного поляризованного состояния мембраны принято называть реполяризацией. Часто, но не всегда возвращение ПД к исходному уровню в состоянии покоя происходит с наличием фаз в форме так называемых следовых потенциалов. Следовые потенциалы неодинаковы в мышцах и нервах. В волокнах скелетных мышц фаза реполяризации очень замедлена. Примерно через 1 мс после начала ПД наблюдается отчетливый перегиб крыла реполяризации – это следовая деполяризация. В нейроне чаще всего кривая реполяризации быстро пересекает уровень МПП и на некоторое время потенциал мембраны становится более электроотрицательным, чем МП. Это явление называют следовой гиперполяризацией.

    Повышение проницаемости мембраны для ионов Na + продолжается в нервных клетках очень короткое время. Связано оно с кратковременным открытием т.н. Na + -каналов (точнее, заслонок М в этих каналах), которое затем сменяется срочным закрытием Na+-пор с помощью т.н. Н-ворот. Этот процесс называется натриевой инактивацией. В результате поток Na в клетку прекращается.

    Наличие специальных Na- и К- каналов и сложного механизма запирания и открытия ворот изучено биофизиками достаточно хорошо. Показано, что существуют избирательные механизмы, регулирующие те или иные каналы. Например, яд тетродотоксин блокирует только Na-поры, а тетраэтиламмоний - только К-поры. Показано, что у некоторых клеток возникновение возбуждения связано в изменением проницаемости мембраны для Са ++ , в других - для Mg + . Исследования механизмов изменения проницаемости мембран продолжаются.

    В результате Na-инактивации и одновременного увеличения К- проницаемости происходит усиленный выход положительных ионов К+ из протоплазмы во внешний раствор. В итоге этих двух процессов происходит восстановление поляризованного состояния мембраны (реполяризация) , и наружная ее поверхность вновь приобретает положительный заряд. В дальнейшем происходят процессы восстановления нормального ионного состава клетки и необходимого градиента концентрации ионов за счет активизации деятельности Na-К-насоса. В результате повышения проводимости резко возрастает поток катионов Na + , поэтому отрицательный заряд в клетке вблизи внутренней стороны поверхности мембраны также резко уменьшается вплоть до преобладания положительных зарядов. В результате происходит изменение знака потенциала, достигающего +30 мВ. После этого проводимость мембраны дляNa + также резко снижается.

    Для нормального протекания ПД играет существенную роль и изменение проводимости мембраны для K + , которая начинает возрастать позже возрастания проводимости дляNa + . Увеличение относительно медленного выходаK + из клетки в фазу снижения проводимости дляNa + вызывает реполяризацию мембраны.

    Таким образом, в живой клетке существуют два различных типа движения ионов через мембрану. Один из них осуществляется по градиенту концентрации ионов и не требует затраты энергии, поэтому его называют пассивным транспортом. Он ответственен за возникновение МП и ПД и ведет в конечном итоге к выравниванию концентраций ионов по обе стороны клеточной мембраны. Второй тип движения ионов через мембрану, осуществляющийся против концентрационного градиента, состоит в "выкачивании" ионов Na+ из протоплазмы и "нагнетании" ионов К+ внутрь клетки. Этот тип ионного транспорта возможет лишь при условии затраты энергии - это активный транспорт. Он является результатом работы специальных ферментных систем (т.н. насосов), и благодаря ему восстанавливается исходная разность концентраций, необходимая для поддержания МП.

    Условия возникновения возбуждения . Для возникновения ПД необходимо, чтобы под влиянием какого-либо раздражителя произошло повышение ионной проницаемости мембраны возбудимой клетки. Однако, возбуждение возможно лишь при условии, если действующий на мембрану агент имеет некоторую минимальную (пороговую) величину, способную изменить мембранный потенциал (МП, или Ео) до некоторого критического уровня (Ек, критический уровень деполяризации). Стимулы, сила которых ниже пороговой величины, называются подпороговыми, выше - надпороговыми. Показано, что пороговая сила, необходимая для возникновения возбуждения при внутриклеточном микроэлектроде равна 10 -7 - 10-9 А.

    Таким образом, главным условием для возникновения ПД является следующее: мембранный потенциал должен стать равным или меньше критического уровня деполяризации (Ео <= Eк)

    Инактивация Na+-системы. Na+-системой обозначают механизм, позволяющий в течение нескольких долей миллисекунды многократно (до 20 раз) увеличить проводимость клеточной мембраны для Na+. Достигнув пикового значения, примерно через 0,5 мс проводимость мембраны для Na+ начинает снижаться. Быстрое снижение проводимости для Na+ называют инактивацией Na+-системы. В основе инактивации Na+-системы лежит переход в инактивационное состояние потенциалзависимых Na+-каналов. Поэтому скорость и степень снижения проводимости потенциалзависимы. Это означает, что чем больше отличается потенциал мембраны от мембранного потенциала покоя в сторону электроположительности, тем сильнее инактивирована Na+-система. Поэтому деполяризация мембраны вызывает снижение тока Na+ внутрь клетки. С одной стороны, это свидетельствует о том, что усиление тока Na+ само себе служит причиной его быстрого последующего снижения и начала развития реполяризации. С другой стороны, это означает, что если исходный потенциал клетки выше потенциала покоя на 20–30 мВ, то Na+-система полностью инактивирована и никакая последующая деполяризация уже не может активировать ее, т.е. вызвать резкое увеличение проводимости для Na+ и генерацию ПД.

    Потенциа́л де́йствия - волна возбуждения , перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляет электрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона , мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса , играющего сигнальную (регуляторную) роль.

    Рис. 1. Схема распределения зарядов по разные стороны мембраны возбудимой клетки в спокойном состоянии (A ) и при возникновении потенциала действия (B ) (см. объяснения в тексте).

    Потенциалы действия могут различаться по своим параметрам в зависимости от типа клетки и даже на различных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Тем не менее, в основе любого потенциала действия лежат следующие явления:

      Мембрана живой клетки поляризована - её внутренняя поверхность заряжена отрицательно по отношению к внешней благодаря тому, что в растворе возле её внешней поверхности находится бо́льшее количество положительно заряженных частиц (катионов), а возле внутренней поверхности - бо́льшее количество отрицательно заряженных частиц (анионов).

      Мембрана обладает избирательной проницаемостью - её проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.

      Мембрана возбудимой клетки способна быстро менять свою проницаемостъ для определённого вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю (Рис.1 ).

    Первые два свойства характерны для всех живых клеток. Третье же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

    Фазы потенциала действия

      Предспайк - процесс медленной деполяризации мембраны до критического уровня деполяризации (местное возбуждение, локальный ответ).

      Пиковый потенциал, или спайк , состоящий из восходящей части (деполяризация мембраны) и нисходящей части (реполяризация мембраны).

      Отрицательный следовой потенциал - от критического уровня деполяризации до исходного уровня поляризации мембраны (следовая деполяризация).

      Положительный следовой потенциал - увеличение мембранного потенциала и постепенное возвращение его к исходной величине (следовая гиперполяризация).

    Общие положения

    Рис. 2. A. Схематичное изображение идеализированного потенциала действия.B. Реальный потенциал действия пирамидного нейронагиппокампа крысы. Форма реального потенциала действия обычно отличается от идеализированной.

    Поляризация мембраны живой клетки обусловлена отличием ионного состава с её внутренней и наружной стороны. Когда клетка находится в спокойном (невозбуждённом) состоянии, ионы по разные стороны мембраны создают относительно стабильную разность потенциалов, называемуюпотенциалом покоя . Если ввести внутрь живой клеткиэлектрод и измерить мембранный потенциал покоя, он будет иметь отрицательное значение (порядка −70 - −90 мВ). Это объясняется тем, что суммарный заряд на внутренней стороне мембраны существенно меньше, чем на внешней, хотя с обеих сторон содержатся икатионы , ианионы . Снаружи - на порядок большеионов натрия ,кальция ихлора , внутри - ионовкалия и отрицательно заряженныхбелковых молекул, аминокислот, органических кислот,фосфатов ,сульфатов . Надо понимать, что речь идёт именно о заряде поверхности мембраны - в целом среда и внутри, и снаружи клетки заряжена нейтрально.

    Потенциал мембраны может изменяться под действием различных стимулов. Искусственным стимулом может служить электрический ток , подаваемый на внешнюю или внутреннюю сторону мембраны через электрод. В естественных условиях стимулом часто служит химический сигнал от соседних клеток, поступающий черезсинапс или путёмдиффузной передачи через межклеточную среду. Смещение мембранного потенциала может происходить в отрицательную (гиперполяризация ) или положительную (деполяризация ) сторону.

    В нервной ткани потенциал действия, как правило, возникает при деполяризации - если деполяризация мембраны нейрона достигает некоторого порогового уровня или превышает его, клетка возбуждается, и от её тела каксонам идендритам распространяется волна электрического сигнала. (В реальных условиях на теле нейрона обычно возникают постсинаптические потенциалы, которые сильно отличаются от потенциала действия по своей природе - например, они не подчиняются принципу «всё или ничего». Эти потенциалы преобразуются в потенциал действия на особом участке мембраны -аксонном холмике , так что потенциал действия не распространяется на дендриты).

    Рис. 3. Простейшая схема, демонстрирующая мембрану с двумя натриевыми каналами в открытом и закрытом состоянии, соответственно

    Это обусловлено тем, что на мембране клетки находятся ионные каналы - белковые молекулы, образующие в мембране поры, через которые ионы могут проходить с внутренней стороны мембраны на наружную и наоборот. Большинство каналов ионоспецифичны - натриевый канал пропускает практически только ионы натрия и не пропускает другие (это явление называют селективностью). Мембрана клеток возбудимых тканей (нервной и мышечной) содержит большое количествопотенциал-зависимых ионных каналов, способных быстро реагировать на смещение мембранного потенциала. Деполяризация мембраны в первую очередь вызывает открытие потенциал-зависимых натриевых каналов. Когда одновременно открывается достаточно много натриевых каналов, положительно заряженные ионы натрия устремляются через них на внутреннюю сторону мембраны. Движущая сила в данном случае обеспечиваетсяградиентом концентрации (с внешней стороны мембраны находится намного больше положительно заряженных ионов натрия, чем внутри клетки) и отрицательным зарядом внутренней стороны мембраны (см. Рис. 2). Поток ионов натрия вызывает ещё бо́льшее и очень быстрое изменение мембранного потенциала, которое и называютпотенциалом действия (в специальной литературе обозначается ПД).

    Согласно закону «всё-или-ничего» мембрана клетки возбудимой ткани либо не отвечает на стимул совсем, либо отвечает с максимально возможной для неё на данный момент силой. То есть, если стимул слишком слаб и порог не достигнут, потенциал действия не возникает совсем; в то же время, пороговый стимул вызовет потенциал действия такой жеамплитуды , как и стимул, превышающий пороговый. Это отнюдь не означает, что амплитуда потенциала действия всегда одинакова - один и тот же участок мембраны, находясь в разных состояниях, может генерировать потенциалы действия разной амплитуды.

    После возбуждения нейрон на некоторое время оказывается в состоянии абсолютной рефрактерности , когда никакие сигналы не могут его возбудить снова, затем входит в фазуотносительной рефрактерности , когда его могут возбудить исключительно сильные сигналы (при этом амплитуда ПД будет ниже, чем обычно). Рефрактерный период возникает из-за инактивации быстрого натриевого тока, то есть инактивации натриевых каналов (см. ниже).

    (ПД) — это кратковременные амплитудные изменения мембранного потенциала покоя (МПС), возникающие при возбуждении живой клетки. По сути это электрический разряд — быстрая кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона или мышечного волокна), в результате которого внешняя поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, который играет сигнальную (регуляторную) роль.

    Общая характеристика

    Потенциалы действия могут отличаться по своим параметрам в зависимости от типа клетки и даже на разных участках мембраны одной и той же клетки. Наиболее характерный пример различий: потенциал действия сердечной мышцы и потенциал действия большинства нейронов. Все же, в основе любого потенциала действия лежат следующие явления:

    1. «Мембрана живой клетки поляризована» — ее внутренняя поверхность заряжена отрицательно по отношению к наружной благодаря тому, что в растворе у ее внешней поверхности находится большее количество положительно заряженных частиц (катионов), а у внутренней поверхности — большее количество отрицательно заряженных частиц (анионов).
    2. «Мембрана имеет избирательную проницаемость ‘- ее проницаемость для различных частиц (атомов или молекул) зависит от их размеров, электрического заряда и химических свойств.
    3. «Мембрана возбудимой клетки способна быстро менять свою проницаемость ‘для определенного вида катионов, вызывая переход положительного заряда с внешней стороны на внутреннюю

    Первые два свойства характерны для всех живых клеток. Третья же является особенностью клеток возбудимых тканей и причиной, по которой их мембраны способны генерировать и проводить потенциалы действия.

    Основной математической моделью, описывающей генерацию и передачу потенциала действия, является модель Ходжкина-Хаксли.

    Фазы

    Можно четко выделить пять фаз развития ПД:

    Нарастание (деполяризация)

    Возникновение потенциала действия (ПД) связано с увеличением проницаемости мембраны для ионов натрия (в 20 раз по сравнению с проницаемостью для К +, и в 500 раз по сравнению с исходной проницаемостью Na +) и последующим усилением диффузии этих ионов по концентрационном градиенту внутрь клетки, приводит к изменению (уменьшение) мембранного потенциала. Уменьшение мембранного потенциала приводит к увеличению проницаемости мембраны для натрия путем открытия потенциал-зависимых натриевых каналов, а увеличение проницаемости сопровождается усилением диффузии натрия в цитоплазму, что вызывает еще более значительную деполяризацию мембраны. Благодаря наличию положительной обратной связи деполяризация мембраны при возбуждении происходит с ускорением и поток ионов натрия в клетку все время растет. Интенсивность же потока ионов калия, направленного из клетки наружу, в первые моменты возбуждения остается в начале. Усиленный поток положительно заряженных ионов натрия внутрь клетки вызывает сначала исчезновение избыточного отрицательного заряда на внутренней поверхности мембраны, а затем приводит к перезарядки мембраны. Поступления ионов натрия происходит до тех пор, пока внутренняя поверхность мембраны не приобретет положительный заряд, достаточный для уравновешивания градиента концентрации натрия и прекращение его дальнейшего перехода внутрь клетки. Натриевый возникновения ПД подтверждают опыты с изменением внешней и внутренней концентрации этого иона. Было показано, что десятикратном изменении концентрации ионов натрия во внешнем или внутреннем среде клетки, соответствует изменение ПД на 58 мВ. При полном удалении ионов натрия из окружающей клетку жидкости ПД ни возникал. Таким образом, установлено, что ПД возникает в результате избыточной, по сравнению с покоем, диффузии ионов натрия из окружающей жидкости внутрь клетки. Период, в течение которого проницаемость мембраны для ионов натрия при открытии натриевых каналов растет, является небольшим (0,5-1 мс) вслед за этим наблюдается повышение проницаемости мембраны для ионов калия благодаря открытию потенциал-зависимых калиевых каналов, и, следовательно, усиление диффузии этих ионов из клетки наружу.

    Принцип «все или ничего» Согласно закону «все-или-ничего» мембрана клетки возбудимой ткани или не отвечает стимул совсем, или отвечает с максимально возможной для нее на данный момент силой. Действие раздражителя обычно приводит к локальной деполяризации мембраны. Это вызывает открытие натриевых каналов, которые чувствительны к изменениям потенциала, а через это — увеличивает натриевую проводимость, что приводит к еще большей деполяризации. Существование такой обратной связи обеспечивает регенеративную (возобновляемую) деполяризацию клеточной мембраны. Величина потенциала действия зависит от силы раздражителя, а сам он возникает только в том случае, когда деполяризация превышает некоторый определенный для каждой клетки предельный уровень. Это явление получило название «все или ничего». Однако, если деполяризация составляет 50-75% от предельной величины, то в клетке может возникнуть локальный ответ, амплитуда которой значительно ниже амплитуду потенциала действия. Отсутствие потенциала действия при пидграничному уровне деполяризации объясняется тем, что при этом недостаточно увеличивается натриевая проницаемость, чтобы вызвать регенеративную деполяризацию. Уровень деполяризации, который возникает при этом, не вызывает открытие новых натриевых каналов, поэтому натриевая проводимость быстро уменьшается, и в клетке снова устанавливается потенциал покоя.

    Овершут

    Деполяризация мембраны приводит к реверсии мембранного потенциала (МП становится положительным). В фазу овершута Na + -ток начинает стремительно снижаться, что связано с инактивацией потенциал-зависимых Na + -каналов (время открытого состояния — судьбы миллисекунды) и исчезновением электрохимического градиента Na +.

    Рефрактерность Одним из последствий исчезновения градиента Na + является рефрактерность мембраны — временная неспособность отвечать на раздражитель. Если раздражитель возникает сразу после прохождения потенциала действия, то возбудимость не возникнет ни при силе раздражителя на уровне порога, ни при значительно более сильное раздражителю. Такое положение полной невозбудимости называется абсолютным рефрактерным периодом. За ним следует относительный рефрактерный период, когда надпороговый раздражитель может вызвать потенциал действия со значительно меньшей амплитудой чем в норме. Потенциал действия привычной амплитуды при действии порогового раздражителя можно вызвать только после нескольких миллисекунд после предварительного потенциала действия. Абсолютный рефрактерный период ограничивает максимальную частоту генерации потенциалов действия.

    Реполяризация

    Увеличение ионного потока калия, направленного из клетки наружу, приводит к уменьшению мембранного потенциала, в свою очередь обусловливает уменьшение проницаемости мембраны для ионов натрия, что, как указывалось, является функцией мембранного потенциала. Таким образом, второй этап характеризуется тем, что поток ионов калия из клетки наружу растет, а встречный поток ионов натрия уменьшается. Такая реполяризация мембраны продолжается, пока не произойдет восстановление потенциала покоя — реполяризация мембраны. После этого проницаемость для ионов калия также падает до исходной величины. Внешняя поверхность мембраны за счет положительно заряженных ионов калия, вышедших в среду, вновь приобретает положительный потенциала относительно внутреннего.

    Следовая деполяризация и гиперполяризация

    В конечной фазе происходит замедление восстановления мембранного потенциала покоя, и при этом регистрируются следовые реакции в виде следовой деполяризации и гиперполяризации, обусловлены медленным восстановлением исходной проницаемости для ионов К +.

    Распространение

    Распространение в немиелинизированные волокне

    В немиелинизированные (без`мякотному) нервном волокне ПД распространяется от точки к точке, поскольку возбуждение можно зарегистрировать как такое, что постепенно «бежит» по всему волокну от места своего возникновения. Ионы натрия, входящих внутрь возбуждении участка, служат источником электрического тока для возникновения ПД в прилегающих участках. В этом случае импульс возникает между деполяризована участком мембраны и ее невозбужденном участком. Разность потенциалов здесь во много раз выше, чем необходимо для того, чтобы деполяризация мембраны достигла предельного уровня. Скорость распространения импульса в таких волокнах 0,5-2 м / с

    Распространение в миелинизированные волокне

    Нервные отростки большинства соматических нервов миелинизированные. Только очень незначительные их участки, так называемые перехвата узла (перехват Ранвье), покрытые обычной клеточной мембраной. Такие нервные волокна характеризуются тем, что на мембране только в перехватах размещении потенциал-зависимые ионные каналы. Кроме того, эта оболочка повышает электрическое сопротивление мембраны. Поэтому при сдвиге мембранного потенциала ток проходит через мембрану перехватывающих участка, то есть прыжками (сальтаторно) от одного перехвата к другому, что позволяет увеличить скорость проведения нервного импульса, которая составляет от 5 до 120 м / с. Причем потенциал действия, который возник в одном из перехватов Ранвье, вызывает потенциалы действия в соседних перехвата за счет возникновения электрического поля, которое вызывает начальную деполяризацию в этих перехватов. Параметры ЭДС поля и дистанция его эффективного действия зависят от кабельных свойств аксона.

    Типы нервных волокон, скорость проведения импульса, в зависимости от миелинизации
    Тип Диаметр (мкм) Миелинизация Скорость проведения (м / с) Функциональное назначение
    А alpha 12-20 сильная 70-120 Подвижные волокна соматической НС; чувствительные волокна проприорецепторов
    А beta 5-12 сильная 30-70 Чувствительные волокна рецепторов кожи
    А gamma 3-16 сильная 15-30 Чувствительные волокна проприорецепторов
    А delta 2-5 сильная 12-30 Чувствительные волокна терморецепторов, ноцицепторов
    В 1-3 слабая 3-15 Преганглионарные волокна симпатической НС
    С 0,3-1,3 отсутствует 0,5-2,3 Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов некоторых механорецепторов

    Распространение потенциала действия между клетками

    В химическом синапсе после того, как волна потенциала действия доходит нервного окончания, она вызывает высвобождение нейротрансмиттеров из пресинаптических пузырьков в синаптическую щель. Молекулы медиатора, высвобождаемых с пресинапса, связываются с рецепторами на постсинаптической мембране, в результате чего в рецепторных макромолекулах открываются ионные каналы. Ионы, начинают поступать внутрь постсинаптической клетки через открытые каналы, изменяют заряд ее мембраны, что приводит к частичной деполяризации мембраны и, как следствие, провоцирование генерации постсинаптической клетки потенциала действия.

    В электрическом синапсе отсутствует «посредник» передачи в виде нейромедиатора. Зато клетки соединены между собой с помощью специфических протеиновых тоннелей — конексонив, поэтому ионные токи, с пресинаптической клетки могут стимулировать постсинаптическую клетку, вызывая зарождения в ней потенциала действия. Благодаря такому строению, потенциал действия может распространяться в обе стороны и значительно быстрее, чем через химический синапс.

      Схема процесса передачи нервного сигнала в химическом синапсе

      Схема строения электрического синапса

    Потенциал действия в различных типах клеток

    Потенциал действия в мышечных тканях

    Потенциал действия в скелетных мышечных клетках аналогичный потенциала действия в нейронах. Потенциал покоя в них как правило -90мВ, что меньше, чем потенциал покоя типовых нейронов. Потенциал действия мышечных клеток длится примерно 2-4 мс, абсолютный рефрактерный период составляет примерно 1-3 мс, а скорость проводимости вдоль мышц примерно 5 м / с.

    Потенциал действия в сердечных тканях

    Потенциал действия клеток рабочего миокарда состоит из фазы быстрого деполяризации, начальной быстрой реполяризации, которая переходит в фазу медленной реполяризации (фаза плато), и фазы быстрой конечной реполяризации. Фаза быстрой деполяризации обусловлена ​​резким повышением проницаемости мембраны для ионов натрия, вызывает быстрый входящий натриевый ток, при достижении мембранного потенциала 30-40 мВ инактивируется и в дальнейшем главную роль играют кальциевый ионный ток. Деполяризация мембраны вызывает активацию кальциевых каналов, в результате чего возникает дополнительный Деполяризующий входящий кальциевый ток.

    Потенциал действия в сердечной ткани играет важную роль в координации сокращений сердца.

    Молекулярные механизмы возникновения потенциала действия

    Активные свойства мембраны, обеспечивающие возникновение потенциала действия, основанные главным образом на поведении потенциал-зависимых натриевых (Na +) и калиевых (K +) каналов. Начальная фаза ПД формируется входным натриевым током, позже открываются калиевые каналы и выходной K + -ток возвращает потенциал мембраны к исходному уровню. Начальное концентрацию ионов затем восстанавливает натрий-калиевый насос.

    По ходу ПД каналы переходят из состояния в состояние: в Na + -каналов основных состояния трех — закрытый, открытый и инактивированный (в реальности все сложнее, но этих трех состояний достаточно для описания), в K + каналов два — закрытый и открытый.

    Поведение каналов, участвующих в формировании ПД, описывается через проводимость и рассчитывается через коэффициенты переноса (трансфера).

    Коэффициенты переноса были выведены Алан Ллойд Ходжкин и Эндрю Хаксли.

    Проводимость для калия G K на единицу площади Проводимость для натрия G Na на единицу площади

    рассчитать сложнее, поскольку, как уже было упомянуто, в потенциал-зависимых Na + каналов, кроме закрытого / открытого состояний, переход между которыми параметром, еще инактивированный / никак инактивированный состояния, переход между которыми описывается через параметр

    , ,
    где: где:
    a m — Коэффициент трансфера из закрытого в открытое состояние для Na + каналов ; a h — Коэффициент трансфера из инактивированного в не-инактивированный состояние для Na + каналов ;
    b m — Коэффициент трансфера из открытого в закрытое состояние для Na + каналов ; b h — Коэффициент трансфера из не-инактивированного в инактивированный состояние для Na + каналов ;
    m — Фракция Na + каналов в открытом состоянии; h — Фракция Na + каналов в не-инактивированном состоянии;
    (1 — m) — Фракция Na + каналов в закрытом состоянии (1 — h) — Фракция Na + каналов в инактивированном состоянии.

    Методы исследования

    История

    Основные положения мембранной теории возбуждения сформулированы немецким нейрофизиологом Ю.Бернштейном

    В 1902 году Юлиус Бернштейн выдвинул гипотезу, согласно которой клеточная мембрана пропускает внутрь клетки ионы К +, и они накапливаются в цитоплазме. Расчет величины потенциала покоя по уравнению Нернста для калиевого электрода удовлетворительно совпал с измеренным потенциалом между саркоплазме мышцы и окружающей средой, который составил около — 70 мВ. Согласно теории Ю.Бернштейна, при возбуждении клетки ее мембрана повреждается, и ионы К + выходят из клетки по концентрационном градиента до тех пор, пока потенциал мембраны не становится равным нулю. Затем мембрана восстанавливает свою целостность, и потенциал возвращается к уровню потенциала покоя.

    Эту модель развили в своей работе 1952 Алан Ллойд Ходжкин и Эндрю Хаксли в которой описали электрические механизмы, обусловливающие генерацию и передачу нервного сигнала в гигантском аксоне кальмара. За это авторы модели получили Нобелевскую премию в области физиологии и медицины за 1963 год. Модель получила название модель Ходжкина-Хаксли

    В 2005 году Томасом Геймбургом и Анрю Д. Джексоном предложена солитонном модель, основанная на предположении, что сигнал по нейронам распространяется в виде солитонов — устойчивых волн, распространяющихся по клеточной мембране.

    Влияние некоторых веществ на потенциал действия

    Некоторые вещества органического или синтетического происхождения могут блокировать образование или прохождения ПД:

    • Батрахотоксин найден у некоторых представителей рода листолазов. Устойчиво и необратимо повышает проницаемость мембран для ионов натрия.
    • Понератоксин был найден в муравьях рода Paraponera. Блокирует натриевые каналы.
    • Тетродотоксин найден в тканях рыб семейства Скелезубови, из которых готовят японский деликатес Фугу. Блокирует натриевые каналы.
    • Механизм действия большинства анестетиков (Прокаин, Лидокаин) базируется на блокировании натриевых каналов и соответственно на блокировании проведении импульсов по чувствительным нервным волокнам.
    • 4-Аминопиридин — обратно блокирует калиевые каналы, удлиняет срок потенциала действия. Может использоваться в терапии рассеянного склероза.
    • ADWX 1 — обратно блокирует калиевые каналы. В условиях опыта облегчал течение острого рассеянного энцефаломиелита у крыс.

    Изображения по теме

    Потенциал действия (ПД) - это кратковременные высоко амплитуды и изменения МПС, возникающих при возбуждении. Основной причиной ПД является изменение проницаемости мембраны для ионов.
    Рассмотрим развитие ПД на примере нервного волокна. Регистрировать ПД можно при введении одного из электродов в волокно или располагая оба электрода на его поверхности. Проследим процесс формирования ПД при внутриклеточном методе.
    1. В состоянии покоя мембрана поляризована и МПС равен 90 мВ.
    2. Как только начинается возбуждение, величина этого потенциала уменьшается (это уменьшение называется деполяризацией). В ряде случаев потенциал сторон мембраны меняется на противоположный (так называемый овершут). Это первая стадия ПД - деполяризация.
    3. Стадия реполяризации, при которой величина разности потенциалов падает почти до первоначального уровня. Эти две фазы в пиком ПД.
    4. После пика наблюдаются следовые потенциалы - следовая деполяризация и следовая гиперполяризация (гиперполяризация - увеличение разности потенциалов между сторонами мембраны). Например, было 90 мВ, а становится 100 мВ.
    Развивается ПД очень быстро - за несколько миллисекунд. Параметры ПД: 1) переменный характер, поскольку меняется направление движения тока, 2) величина, которая благодаря овершута может превышать МПС; 3) время, в течение которого развиваются ПД и отдельные его стадии - деполяризация, реполяризация, следовая гиперполяризация.
    Как формируется ПД. В состоянии покоя «ворота» потенциалзависимых Na +-каналов закрыты. Закрытые также «ворота» потенциалзависимых К +-каналов.
    1. Во время фазы деполяризации происходит активизация Na +-Kaналив. При этом изменяется конформационный состояние белков, входящих в состав «ворот». Эти «ворота» открываются, и проницаемость мембраны для Na + увеличивается в несколько тысяч раз. Na + лавообразные входит в волокно нерва. В настоящее время К +-каналы открываются очень медленно. Так, в волокно поступает значительно больше Na +, чем выводится из него К +.
    2. Реполяризация характеризуется закрытием Na +-каналов. «Ворота» на внутренней поверхности мембраны закрываются - наблюдается инактивация каналов под воздействием электрических потенциалов. Инактивация происходит медленнее, чем активация. В настоящее время ускоряется активация К +-каналов и растет диффузия К + наружу.
    Таким образом, деполяризация связана преимущественно со входом Na + в волокно, а реполяризация - с выходом из него К +. Соотношение между входом Na + и выходом К + изменяется в процессе раз «витке ПД: в начале ПД входит Na + в несколько тысяч раз больше, чем получается К +, а затем выходит более К +, чем входит Na +.
    Причиной следовых потенциалов дальнейшие изменения соотношения между этими двумя процессами. Во время следовой гиперполяризации много К +-каналов еще остаются открытыми и К + продолжает выходить наружу.
    Восстановление ионных градиентов после ПД. Одиночные ПД изменяют разность концентраций ионов в нервном волокне и за его пределами очень мало. Но в тех случаях, когда проходит значительное количество импульсов, эта разница может быть весьма существенной.
    Восстановление ионных градиентов происходит тогда за счет усиления работы Na + / K +-HacociB - в большей степени нарушается этот градиент, тем интенсивнее работают насосы. При этом используется энергия АТФ. Часть ее выделяется в виде тепла, поэтому в этих случаях наблюдается кратковременное повышение температуры волокна.
    Условия необходимые для возникновения ПД. ПД возникает лишь при определенных условиях. Раздражители, действующие на волокну, могут быть разными. Чаще используется постоянный электрический ток. Он легко дозируется, мало травмирует ткань и ближайший тех раздражителей, которые существуют в живых организмах.
    При каких условиях постоянный ток может зумовитК появление ПД? Ток должен быть достаточно сильным, действовать определенное время, его нарастание должно быть быстрым. Наконец, имеет значение и направление тока (действие анода или катода).
    В зависимости от силы различают подпороговый (недостаточный для возникновения возбуждения), пороговый (достаточный) и надпороговый (чрезмерный) ток.
    Несмотря на то что подпороговый ток не вызывает возбуждение, он все же деполяризует мембрану, и эта деполяризация тем больше, чем выше его напряжение.
    Деполяризация, развивающийся при этом, называется локальным ответом и является видом местного возбуждения. Оно характеризуется тем, что не распространяется, величина его зависит от силы раздражения (закрном силовых отношений: чем больше сила раздражения, тем активнее ответ). При локальной ответа возбудимость ткани повышается. Возбудимость - это способность отвечать на раздражение и переходить в состояние возбуждения.
    Если сила раздражителя достаточное (пороговая), то деполяризация достигает определенной величины, называется критическим уровнем деполяризации (Ек). Для нервного волокна, покрытого миелином, Ек составляет около 65 мВ. Таким образом, разница между МПС (Е0), равный в данном случае 90 мВ, и Ек составляет 25 мВ. Эта величина (ДЕ = Е0-Ек) очень важна для характеристики возбудимости ткани.
    Когда Е0 увеличивается при деполяризации, возбудимость выше и, наоборот, снижение Е0 при гиперполяризации приводит к ее уменьшению. ГДЕ может зависеть не только от величины Е0, но и от критического уровня деполяризации (Ек).
    При пороговой силе раздражителя возникает ПД. Это уже не местное возбуждение, оно способно распространяться на дальние расстояния, подлежит закону «все или ничего» (при увеличении силы раздражителя амплитуда ПД не растет). Возбудимость при развитии ПД отсутствует или значительно снижена.
    ПД является одним из показателей возбуждения - активного физиологического процесса, которым живые клетки (нервные, мышечные, железистые) отвечают на раздражение. Во время возбуждения меняются метаболизм, температура клеток, нарушается ионная равновесие между цитоплазмой и внешней средой, происходит ряд других процессов.
    Кроме силы постоянного тока, возникновения ПД зависит также от длительности его действия. Существует обратная пропорциональная зависимость между силой тока и длительностью его действия. Подпороговый ток даже при очень длительном воздействии не приведет возбуждения. Надпороговый ток при слишком короткой действия также не приведет к возбуждению.
    Для возникновения возбуждения требуется также определенная скорость (крутизна) нарастание силы тока.
    Если повышать силу тока очень медленно, то при этом будет меняться Ек и Е0 может не достичь его уровня.
    Имеет значение и направление тока: ПД возникает при замыкании тока только тогда, когда катод помещается на внешней поверхности мембраны, а анод - в клетке или волокне. При прохождении тока изменяется МП. Если на поверхности лежит катод, то развивается деполяризация (возбудимость повышается), а если анод - гиперполяризация (возбудимость снижается). Знание механизмов действия электрического тока на живые объекты крайне необходимо для разработки и применения в клинике методов физиотерапии (диатермия, УВЧ, гипергидроз и др.)..
    Изменение возбудимости при ПД. При локальной ответа возбудимость повышается (ДЭ уменьшается). Изменения возбудимости во время самого ПД можно заметить, если раздражать повторно в разные стадии развития ПД. Оказывается, что во время пика даже очень сильное повторное раздражение остается без ответа (период абсолютной рефрактерности). Затем возбудимость постепенно нормализуется, но она все же ниже, чем начальная (период относительной рефрактерности).
    При выраженной следовой деполяризации возбудимость выше, чем первоначальная, а при положительной следового потенциала возбудимость снова снижается. Абсолютная рефрактерность объясняется инактивизациею Na + каналов и повышением проводимости К + - каналов. При относительной рефрактерности вновь активизируются Na + - каналы и снижается правиднисть К + - каналов.
    Двухфазный характер ПД. Обычно в условиях, когда микроэлектрод содержится внутри клетки или волокна, наблюдается однофазный ПД. Иная картина бывает в тех случаях, когда оба электрода лежат на внешней поверхности мембраны - биполярная регистрация. Возбуждение, которое представляет собой волну электроотрицательности, перемещаясь по мембране, доходит сначала до одного электрода, затем помещается между электродами, наконец достигает второго электрода, а затем распространяется дальше. В этих условиях ПД имеет двухфазный характер. Регистрация ПД широко используется в клинике для диагностики

    Потенциал действия - волна возбуждения, перемещающаяся по мембране живой клетки в процессе передачи нервного сигнала. По сути своей представляетэлектрический разряд - быстрое кратковременное изменение потенциала на небольшом участке мембраны возбудимой клетки (нейрона, мышечного волокна или железистой клетки), в результате которого наружная поверхность этого участка становится отрицательно заряженной по отношению к соседним участкам мембраны, тогда как его внутренняя поверхность становится положительно заряженной по отношению к соседним участкам мембраны. Потенциал действия является физической основой нервного или мышечного импульса, играющего сигнальную (регуляторную) роль.

    Потенциал действия развивается на мембране в результате её возбуждения и сопровождается резким изменением мембранного потенциала.

    В потенциале действия выделяют несколько фаз:

    Фаза деполяризации;

    Фаза быстрой реполяризации;

    Фаза медленной реполяризации (отрицательный следовый потенциал);

    Фаза гиперполяризации (положительный следовый потенциал).

    Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциал чувствительных Na+- каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

    Фаза быстрой и медленной реполяризации. В результате деполяризации мембраны происходит открытие потенциалчувствительных К+- каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется. Усиливает реполяризацию поступление в клетку Ca2+ Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+/K+ помпы. Поступление в клетку Cl– дополнительно гиперполяризует мембрану Изменение величины мембранного потенциала во время развития потенциала действия связано в первую очередь с изменением проницаемости мембраны для ионов натрия и калия.



    Современные представления о механизме его генерации

    Методом фиксации мембранного потенциала удалось измерить токи, текущие через плазмолемму аксона (аксолемму) кальмара и убедиться в том, что в покое ток катионов (К +) направлен из цитоплазмы в интерстиций, а при возбуждении доминирует ток катионов (Na +) в клетку. В состоянии «покоя» плазмолемма почти непроницаема для ионов, находящихся в межклеточном пространстве(Na + С1 - и НСОз - ,).

    При возбуждении проницаемость для ионов натрия на время, равное нескольким миллисекундам, резко возрастает, а затем снова падает. В результате катионы (ионы Na +) и анионы (С1 - , НСОз) разобщаются на плазмолемме: Na + входит в цитоплазму, а анионы нет. Поток положительных зарядов в цитоплазму не только компенсирует потенциал покоя, но и превышает его. Возникает так называемый «овершут» (или инверсия мембранного потенциала). Входящий поток натрия - результат его пассивного движения по открывшимся мембранным каналам по концентрационному и электрическому градиентам. Выходящий поток этого катиона обеспечивается калий-натриевой помпой.

    Виды электрических ответов (электротонический потенциал, локальный ответ, потенциал действия). Механизм их возникновения.

    В пpоцессе pазвития возбуждения плазматической мембpаны (изменения ее ионной пpоницаемости и электpического состояния) в зависимости от силы pаздpажителя возникает тpи вида электpических ответов:

    Электpотонический потенциал

    Локальный ответ

    Потенциал действия

    Электpотонический потенциал

    Электротонический потенциал - это пассивный сдвиг величины мембранного потенциала (МП) при действии подпорогового стимула электрического тока.

    1. Возникает в ответ на действие катода постоянного тока по силе воздействия меньше 0,5 поpоговой величины



    2. Сопpовождается пассивной, слабо выpаженной электpотонической деполяpизацией за счет "-" заpяда катода (ионная пpоницаемость мембpаны пpактически не изменяется), котоpая наблюдается только во вpемя действия pаздpажителя

    3. Развитие и исчезновение потенциала пpоисходит по экспоненциальной кpивой и опpеделяется паpаметpами

    4. pаздpажающего тока, а также сопpотивлением и емкостью мембpаны

    5. Такой вид возбуждения имеет местный хаpактеp и не может pапpспpостpаняться

    6. Увеличивает возбудимость ткани

    Механизм возникновения

    Простейшая модель раздражимости при прохождении тока представляет собой процесс, при котором положительные заряды тока кратковременно разряжают, т.е. деполяризуют мембрану, что вызывает нарушение равновесия ионных потоков.

    Во время деполяризации больше ионов калия (+К) покидает клетку и тем самым уравновешивается поток ионного и электрического тока, что, в свою очередь, приводит к стабилизации заряда мембранной емкости. Сдвиг потенциала, вызываемый импульсом тока, называетсяэлектротоническим потенциалом, илиэлектротоном .

    Скорость нарастания электротонического потенциала определяется в основном емкостью мембраны. Однако большинство нервных клеток имеют вытянутую форму. Нервное волокно иногда достигает длины 1 м при диаметре 1 мкм. Следовательно, выходя из такой клетки, пропускаемый через нее ток будет распределяться очень неравномерно. Установлено, что по мере увеличения расстояния от источника возбуждения (тока) временной ход электротонического потенциала (электротона) постепенно замедляется. Происходит это потому, что электротон преодолевает сопротивление не только мембраны, но продольное сопротивление внутренней среды самой нервной клетки. Для малых сдвигов потенциала электротонические потенциалы в нерве можно зарегистрировать на расстоянии не более нескольких сантиметров от места их возникновения, т.е. локально.

    Деполяризующий электротонический потенциал, который превышает пороговый уровень, вызывает возбуждение. Возбуждение возможно тогда, когда импульс тока имеет адекватную длительность и амплитуду. Соответственно определенный уровень длительности и амплитуды импульса тока существенно влияет на передачу информации в форме потенциала действия. В этой связи локальный характер деполяризации дендиритов, тел нервных клеток и аксонов различается.

    Деполяризация дендритов и соответственно тел нервных клеток наблюдается едва достигается пороговый уровень. Происходит это потому, что деполяризация идет за счет повышения натриевой (+Nа) проницаемости мембраны, которая в дальнейшем продолжает деполяризацию автоматически.

    Локальный ответ

    Локальный потенциал (ЛП) - это местное нераспространяющееся подпороговое возбуждение, существующее в пределах от потенциала покоя (-70 мВ в среднем) до критического уровня деполяризации (-50 мВ в среднем). Его длительность может быть от нескольких миллисекунд до десятков минут.

    1. Возникает в ответ на действие pаздpажителя силой от 0,5 до 0,9 поpога

    2. Активная фоpма деполяpизации, поскольку ионная пpоницаемость повышается в зависимости от силы подпоpогового pаздpажителя

    3. Гpадуален по амплитуде (амплитуда находится в пpямой зависимости от силы и частоты pаздpажений)

    4. Развитие деполяpизации пpоисходит до кpитического уpовня, пpичем не пpямолинейно, а по S-обpазной кpивой. Пpи этом деполяpизация пpодолжает наpастать после пpекpащения pаздpажения, а затем сpавнительно медленно исчезает

    5. Способен к суммации (пpостpанственной и вpеменной)

    6. Локализуется в пункте действия pаздpажителя и пpактически не способен к pаспpостpанению, т.к. хаpактеpизуется большой степенью затухания

    7. Повышает возбудимость стpуктуpы

    Виды Локальных ответов(потенциалов):

    1. Рецепторный. Возникает на рецепторных клетках (сенсорных рецепторах) или рецепторных окончаниях нейронов под действием стимула (раздражителя). Механизм возникновения такого рецепторного локального потенциала детально рассмотрен на примере восприятия звука слуховыми рецепторами - Молекулярные механизмы рецепции (трансдукции) звука по пунктам Этот процесс называется "трансдукция", то есть преобразование раздражения в нервное возбуждение. Сенсорные рецепторы вторичного типа не умеют порождять нервный импульс, поэтому их возбуждение остаётся локальным и от его амплитуды зависит то, сколько рецепторная клетка выбросит медиатора.

    2. Генераторный . Возникает на сенсорных афферентных нейронах (на их дендритных окончаниях, перехватах Ранвье и/или аксонных холмиках) под действием медиаторов, которые выделили сенсорные клеточные рецепторы вторичного типа. Генераторный потенциал превращается в потенциал действия и нервный импульс при достижении им критического уровня деполяризации, т.е. он генерирует (порождает) нервный импульс. Потому он и назван генераторным.

    3. Возбуждающий постсинаптический потенциал (ВПСП) . Возникает на постсинаптической мембране синапса, т.е. он отражает передачу возбуждения от одного нейрона к другому. Обычно он составляет +4 мВ. Важно отметить, что возбуждение передаётся от одного нейрона другому именно в виде ВПСП, а не готового нервного импульса. ВПСП вызывает деполяризацию мембраны, но подпороговую, не достигающую КУД и не способную породить нервный импульс. Поэтому обычно требуется целая серия ВПСП для того, чтобы родился нервный импульс, т.к. величина единичного ВПСП совершенно недостаточна для того, чтобы достичь критического уровня деполяризации. Вы можете сами подсчитать, сколько требуется одновременно действующих ВПСП, чтобы родился нервный импульс. (Ответ: 5-6.)

    4. Тормозный постсинаптический потенциал (ТПСП) . Возникает на постсинаптической мембране синапса, но только не возбуждает её, а, наоборот, тормозит. Соотвтетственно, эта постсинаптическая мембрана входит в состав тормозного синапса , а не возбуждающего. ТПСП вызывает гиперполяризацию мембраны, т.е. сдвигает потенциал покоя вниз, подальше от нуля. Обычно он составляет -0,2 мВ. Используются два механизма создания ТПСП: 1) "хлорный" - происходит открытие ионных каналов для хлора (Cl-), через них в клетку входят ионы хлора и увеличивают её электроотрицательность, 2)"калиевый" - происходит открытие ионных каналов для калия (К+), через них выходят ионы калия, уносят из клетки положительные заряды, что увеличивает электроотрицательность в клетке.

    5. Пейсмекерные потенциалы - это эндогенные близкие к синусоидальным периодические колебания мембранного потенциала с частотой 0,1-10 Гц и амплитудой 5-10 мВ. Их генерируют у себя специальные нейроны-пейсмекеры (водителями ритма) самостоятельно, без внешнего воздействия. Пейсмекерные локальные потенциалы обеспечивают периодическое достижение нейроном-пейсмекером критического уровня деполяризации и спонтанную (т.е. самопроизвольную) генерацию им потенциалов действия и, соответственно, нервных импульсов.

    Механизм возникновения

    Важно понять то, что процесс рождения локального потенциала начинается с открытия ионных каналов . Открытие ионных каналов - это самое главное! Их нужно открыть для того, чтобы в клетку пошёл поток ионов и принёс в неё электрические заряды. Эти ионные электрические заряды как раз и вызывают смещение электрического потенциала мембраны вверх или вниз, т.е. локальный потенциал.

    натрия (Na+) , то в клетку вместе с ионами натрия попадают положительные заряды, и её потенциал смещается вверх в сторону нуля. Это - деполяризация, и так рождается возбуждающий локальный потенциал . Можно сказать, что возбуждающие локальные потенциалы порождаются натриевыми ионными каналами, когда они открываются.

    Образно можно сказать и так: "Каналы открываются - потенциал рождается".

    Если открываются ионные каналы для хлора (Cl-) , то в клетку вместе с ионами хлора попадают отрицательные заряды, и её потенциал смещается вниз ниже потенциала покоя. Это гиперполяризация, и таким способом рождается тормозный локальный потенциал . Можно сказать, что тормозные локальные потенциалы порождаются хлорными ионными каналами .

    Существует также ещё один механизм формирования тормозных локальных потенциалов - за счёт открытия дополнительных ионных каналов для калия (К+) . В этом случае из клетки через них начинают выходить "лишние" порции ионов калия, они выносят положительные заряды и увеличивают электроотрицательность клетки, т.е. вызывают её гиперполяризацию. Таким образом, можно сказать, что тормозные локальные потенциалы порождаются дополнительными калиевыми ионными каналами .

    Как видите, всё очень просто, главное - открыть нужные ионные каналы . Стимул-управляемые ионные каналы открываются раздражителем (стимулом). Хемо-управляемые ионные каналы открываются медиатором (возбуждающим или тормозным). Точнее, в зависимости от того на какие каналы (натриевые, калиевые или хлорные) будет действовать медиатор, таков будет и локальный потенциал - возбуждающий или тормозный. А медиатор как для возбуждающих локальных потенциалов, так и для тормозных, может быть одним и тем же, тут важно, какие ионные каналы будут связываться с ним своими молекулярными рецепторами - натриевые, калиевые или хлорные.

    Потенциал действия

    Потенциал действия – это резкое скачкообразное изменение мембранного потенциала с отрицательного на положительный и обратно.

    1. Возникает пpи действие pаздpажителей поpоговой и свеpхпоpоговой силы (может возникать пpи суммации подпоpоговых pаздpажителей вследствии достижения уpовня кpитической деполяpизации)

    2. Активная деполяpизация пpотекает пpактически мгновенно и pазвивается пофазно (деполяpизация, pеполяpизация)

    3. Hе имеет гpадуальной зависимости от силы pаздpажителя и подчиняется закону "все или ничего". Амплитуда зависит только от свойств возбудимой ткани

    4. Hе способен к суммации

    5. Снижает возбудимость ткани

    6. Распpостpаняется от места возникновения по всей мембpане возбудимой клетки без изменения амплитуды

    Механизм возникновения

    Фаза деполяризации . Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

    Фаза быстрой и медленной реполяризации . В результате деполяризации мембраны происходит открытие потенциалчувствительных К+ -каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

    Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+ / K+ помпы.

    Овершут – период времени, в течение которого мембранный потенциал имеет положительное значение.

    Пороговый потенциал – разность между мембранным потенциалом покоя и критическим уровнем деполяризации. Величина порогового потенциала определяет возбудимость клетки – чем больше пороговый потенциал, тем меньше возбудимость клетки.

    6. Возбудимость. Изменение возбудимости в процессе возбуждения.

    А. Возбудимость клетки во время ее возбуждения быстро и сильно изменяется. Различают несколько фаз изменения возбудимости, каждая из которых строго соответствует определенной фазе ПД и, так же как и фазы ПД, определяется состоянием проницаемости клеточной мембраны для ионов. Схематично эти изменения представлены на рис. 3.6.б.

    1. Кратковременное повышение возбудимости в начале развития ПД, когда уже возникла частичная деполяризация клеточной мембраны. Если деполяризация не достигает критической величины, то регистрируется локальный потенциал. В случае, если деполяризация достигает Екр, то развивается ПД. При замедленном развитии начальной деполяризации она оценивается как препотенциал. Возбудимость повышена потому, что клетка частично деполяризована, мембранный потенциал приближается к критическому уровню, поскольку открывается часть потенциалчувствительных быстрых Na-каналов. При этом достаточно небольшого увеличения силы раздражителя, чтобы деполяризация достигла Е кр, при которой возникает ПД.

    2. Абсолютная рефракторная фаза - это полная невозбудимость клетки (возбудимость равна нулю), она соответствует пику ПД и продолжается 1-2 мс; если ПД более продолжителен, то более продолжительна и абсолютная рефракторная фаза. Клетка в этот период при любой силе раздражения не отвечает. Невозбудимость клетки в фазу деполяризации и инверсии (в первую ее половину - восходящая часть пика ПД) объясняется тем, что потенциалзависимые т -ворота Na-каналов уже открыты и ионы Na + быстро поступают в клетку по всем каналам. Те ворота Na-каналов, которые еще не успели открыться, открываются под влиянием деполяризации - уменьшения мембранного потенциала. Поэтому дополнительное раздражение клетки относительно движения ионов Na + в клетку ничего изменить не может.

    Рис. 3.6. Фазовые изменения возбудимости клетки(б) во время ПД (а). 1,4 - возбудимость повышена; 2 - абсолютная рефрактерная фаза;

    2. Относительная рефрактерная фаза - это период восста­новления возбудимости, когда сильное раздражение может вы­звать новое возбуждение (см. рис. 3.6,5, кривая 3). Относитель­ная рефрактерная фаза соответствует конечной части фазы ре­поляризации от уровня Е кр ± 10 мВ и следовой гиперполяри­зации клеточной мембраны, что является следствием все еще по­вышенной проницаемости для ионов К + и избыточного выхода ионов К + -каналов из клетки. Поэтому, чтобы вызвать возбужде­ние в этот период, необходимо приложить более сильное раз­дражение, так как часть Nа + -каналов в конце реполяризации на­ходится еще в состоянии инактивации, а выход ионов К + из клетки препятствует ее деполяризации. Кроме того, в период следовой гиперполяризации мембранный потенциал больше и, естественно, дальше отстоит от критического уровня деполяри­зации. Если реполяризация в конце пика ПД замедляется (см. рис. 3.6,а), то относительная рефрактерная фаза включает и пе­риод замедления реполяризации, и период гиперполяризации. Рис. 3.6.Фазовые изменениявозбудимости клетки (b) во времяПД (а).1,4-возбудимость повышена;2-абсолютная рефрактерная фаза;3-относительная рефрактерная фаза

    4. Фаза экзальтации - это период повышенной возбудимости. Он соответствует следовой деполяризации. В нейронах ЦНС вслед за гиперполяризацией возможна частичная деполяризация клеточной мембраны. В эту фазу очередной ПД можно вызвать более слабым раздражением, поскольку мембранный потенциал несколько ниже обычного и оказывается ближе к критическому уровню деполяри­зации, что объясняют повышенной проницаемостью клеточной мембраны для ионов Nа + . Скорость протекания фазовых изменений возбудимости клетки определяет ее лабильность.

    Б. Лабильность, или функциональная подвижность (Н.Е.Вве­денский)- это скорость протекания одного цикла возбуждения, т.е. ПД. Как видно из определения, лабильность ткани зависит от длительности ПД. Это означает, что лабильность, как и ПД, определяется скоростью перемещения ионов в клетку и из клет­ки, которая, в свою очередь, зависит от скорости изменения проницаемости клеточной мембраны. Особое значение при этом имеет длительность рефрактерной фазы: чем больше рефрактер­ная фаза, тем ниже лабильность ткани.