Определение главного фокусного расстояния линз. Тонкая линза: формула и вывод формулы

Приборы и принадлежности : оптическая скамья, осветитель с матовым или молочным стеклом, ползушка с линзой, экран, собирающая и рассеивающая линзы, линейка с миллиметровыми делениями.

Цель работы : определение фокусного расстояния собирающей линзы.

Краткая теория

Ввиду малости световых волн (диапазон видимого спектра 400-700 нм), оказывается возможным выделить из широкого потока света сравнительно узкую ее часть без существенного нарушения прямолинейности распространения, вследствие дифракции. Такой прямолинейно распространяющийся узкий пучок света называется световым лучом. Световыми лучами можно управлять с помощью линз, зеркал, призм и т.д.

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Линия, проходящая через центры этих поверхностей, называется главной оптической осью . В дальнейшем мы будем иметь в виду лучи, проходящие вблизи главной оптической оси (параксиальные лучи). Все лучи, параллельные главной оптической оси, пересекаются в одной и той же точке оси F - главном фокусе . Точка линзы (точка O на рис. 1), проходя через которую лучи не изменяют своего направления, называется оптическим центром линзы . Расстояние между главным фокусом и оптическим центром называется главным фокусным расстоянием .

В формулах, связывающих геометрические параметры оптической системы, принято правило знаков, согласно которому линейные размер считается отрицательным, если отрезок, его выражающий, располагается по ту сторону линзы, откуда распространяется свет и положительным, если отрезок лежит в стороне, куда распространяется свет. В первом случае значение величины входит в формулу со знаком минус (например: s = -|s| на рис. 1), во втором - со знаком плюс (s 1 = |s 1 | ). Таким образом, все отрезки в оптической системе являются алгебраическими величинами.

На рис. 1 показаны основные точки оптической системы и даны основные определения: AA 1 - главная оптическая ось; F и F 1 - передний и задний фокусы оптической системы; f и f 1 - переднее и заднее фокусные расстояния; s и s 1 - расстояния от линзы до предмета и до изображения; y и y 1 - поперечные размеры предмета и изображения.

Величину Φ=1/f 1 называют оптической силой линзы , которую измеряют в диоптриях (дптр): 1 дтпр = 1 м -1 . Величину β = y 1 /y называют линейным или поперечным увеличением линзы . Можно показать, что β = s 1 /s .

Фокусное расстояние можно вычислить по формуле:

где f 1 - заднее фокусное расстояние, n - показатель преломления вещества линзы; R 1 и R 2 - радиусы сферических поверхностей линзы.

Плоскость, проходящая через главный фокус перпендикулярно главной оптической оси, называется фокальной плоскостью . В точках этой плоскости (побочных фокусах), пересекаются пучки параллельных лучей, идущих под некоторым углом к главной оптической оси.

Определение знака фокусного расстояния подчиняется правилу знаков. При построение изображений, получаемых с помощью собирающих линз, пользуются фокусами от линзы со стороны, противоположной предмету. Поэтому фокусное расстояние собирающей линзы имеет положительное значение. При построении мнимых изображений, получаемых с помощью рассеивающих линз, используется фокус, лежащий от линзы по туже сторону, что и предмет. Поэтому фокусное расстояние рассеивающей линзы имеет отрицательное значение.

Описание аппаратуры и метода измерений

Горизонтальная оптическая скамья составлена из двух параллельных металлических стержней, свободно входящих своими концами в трубки, благодаря чему скамья может быть раздвинута на необходимую длину. Так как стержни и трубки имеют различную толщину, то прибор снабжен ползунками двойного рода: одни предназначены для стержней, другие для трубок.

На одном из концов скамьи установлен экран с круглым осветителем, на котором изображена стрелка, служащая предметом. Отверстие со стрелкой освещается фонарем, снабженным матовым стеклом.

Изображение A 1 B 1 (A 2 B 2) предмета AB , полученное с помощью линзы, рассматривается на экране, помещенном на противоположном конце скамьи. Линзы устанавливаются на такой высоте, при которой перекресток оказывается лежащим на уровне главной оптической оси линзы. Плоскость экрана должна быть перпендикулярна этой оси. Расстояние между приборами измеряется при помощи линейки с миллиметровыми делениями, прикрепленной к скамье.

Главное фокусное расстояние линзы можно определить непосредственно, измеряя расстояние от линзы до предмета и до изображения, воспользовавшись затем уравнением (1).

Однако величины s и s 1 измерить точно нельзя, в силу того, что в общем случае оптический центр линзы не совпадает с центром симметрии и найти его положение трудно.


Рис. 2

Поэтому мы будем пользоваться более совершенным методом, называемым методом Бесселя. Сущность этого метода заключается в следующем. Если расстояние L от предмета до экрана больше 4f , то всегда можно найти два таких положения линзы (рис. 2), при котором на экране получается отчетливые изображения предмета: в одном случае - рис. 2a) - увеличенное, в другом - рис. 2b) - уменьшенное.

В первом положении линзы можно выразить фокусное расстояние, пользуясь формулой (1), соблюдая при этом правило знаков (обозначения указаны на рис.2):

(2)

Аналогично для второго положения:

(3)

Каждая из сумм в знаменателе правой части равенства (2) и (3) равна расстоянию L между предметом и экраном, поэтому:

В таком случае должны быть равны и числители правой части равенств (2) и (3)

(5)

Однако совместное существование равенств (4) и (5) возможно лишь при условии, если s=t , s 1 =t 1 или s=t 1 , t=s 1 . Первое невозможно по условию опыта. Следовательно, остается в силе лишь второе условие.

Обозначим расстояние между оптическими центрами линзы в I и II положениях через l . Тогда из рис. 2 видно, что

Расстояние

Воспользовавшись формулой (2), выразим фокусное расстояние линзы:

Задача, таким образом, сводится к измерению перемещения любой точки линзы или даже подставки, на которой линза закреплена.

Порядок выполнения работы

  • Установить предмет и экран на расстоянии L (по указанию преподавателя), поместить между ними линзу и, передвигая её, добиться получения на экране вполне отчетливого изображения (например, увеличенного). Отметить по шкале положение линзы или какой-нибудь точки ползунка относительно экрана (или предмета)
  • Передвигая линзу, добиться второго отчетливого изображения предмета (уменьшенного) и вновь отметить положение линзы на шкале.
  • Измерить расстояние l между отметками, соответствующими двум положениям линзы.
  • Установки и измерения повторить 5 раз.
  • Изменить расстояние L между экраном и предметом.
  • Все результаты измерения занести в таблицу 1.

N опыта l , см Δl , см L , см ΔL , см
Среднее
Таблица 1

Определение главного фокусного расстояния рассеивающей линзы

Приборы и принадлежности : оптическая скамья, осветитель с матовым стеклом, ползушка с рассеивающей линзой, линейка с миллиметровыми делениями.

Цель работы : определение фокусного расстояния рассеивающей линзы.

Описание метода


Рис. 3

Если на пути лучей, выходящих из точки М и сходящихся после преломления в линзе BB в точке D (рис. 3), поставить рассевающую линзу СС так, чтобы её расстояние от точки D было меньше её фокусного расстояния, то изображение точки М удалиться от линзы ВВ , переместившись в точку Е .

Основываясь на принципе обратимости световых лучей в системах линз, мы можем рассматривать лучи, изображенные на рис. 3, как выходящие из точки Е и собирающиеся в точке М . Тогда точка D будет мнимым изображением точки Е после преломления лучей в рассевающей линзе СС .

Обозначая расстояния точек Е и D от линзы до СС соответственно через s и s" можно, пользуясь формулой (1), вычислить фокусное расстояние рассеивающей линзы, учитывая при этом, что, согласно правилу знаков, числовые значения s и s" войдут в формулу (1) со знаком минус.

Порядок выполнения работы

  • Поместить на оптическую скамью линзу и экран. Передвигая экран, добиться отчетливого изображения предмета.
  • Установить между собирающей линзой и экраном рассеивающую линзу и, смещая экран в сторону свободного конца скамьи, убедиться в возможности получения при данном расположении приборов отчетливого действительного изображения с рассеивающей линзой.
  • После этого снять рассеивающую линзу и, вновь передвигая экран, получить резкое изображение с одной собирающей линзой.
  • Изменить расстояние МD , соответствующее первому положению экрана. Сдвинуть экран и установить вновь. Произвести повторное измерение. Установку экрана и измерения повторить 5 раз.
  • Поставить на скамью рассеивающую линзу и, сдвигая экран, вновь получите резкое изображение предмета.
  • Измерить расстояния от предмета до рассеивающей линзы и нового положения экрана. Установку и измерения повторить 5 раз.

Обработка результатов измерений

N опыта L 0 , см ΔL 0 , см L 1 , см ΔL 1 , см L 2 , см ΔL 2 , см
Среднее
Таблица 2

Контрольные вопросы

  • Что называется главным фокусным расстоянием линзы?
  • В чем состоит правило знаков?
  • Напишите формулу тонкой линзы.
  • Объясните способ Бесселя. В чем его преимущество?
  • В чем заключается принцип обратимости световых лучей?

Литература

  • Савельев И.В. Курс общей физики. - М.: Наука, 1998, т. 4, §3.6, §3.7, §3.8.
  • Иродов И.Е. Волновые процессы. Основные законы. - М.: Лаборатория Базовых Знаний, 1999, §3.3

Существует два условно разных типа задач:

  • задачи на построение в собирающей и рассеивающей линзах
  • задачи на формулу для тонкой линзы

Первый тип задач основан на фактическом построении хода лучей от источника и поиска пересечения преломлённых в линзах лучей. Рассмотрим ряд изображений, полученных от точечного источника, который будем помещать на различных расстояниях от линз. Для собирающей и рассеивающей линзу существуют рассмотренные (не нами) траектории распространения луча (рис. 1) от источника .

Рис.1. Собирающая и рассеивающая линзы (ход лучей)

Для собирающей линзы (рис. 1.1) лучи:

  1. синий. Луч, идущий вдоль главной оптической оси, после преломления проходит через передний фокус.
  2. красный. Луч, идущий через передний фокус, после преломления распространяется параллельно главной оптической оси.

Пересечение любых из этих двух лучей (чаще всего выбирают лучи 1 и 2) дают ().

Для рассеивающей линзы (рис. 1.2) лучи:

  1. синий. Луч, идущий параллельно главной оптической оси, преломляется так, что продолжения луча проходит через задний фокус.
  2. зелёный. Луч, проходящий через оптический центр линзы, не испытывает преломления (не отклоняется от первоначального направления).

Пересечение продолжений рассмотренных лучей даёт ().

Аналогично , получим набор изображений от предмета, расположенного на различных расстояниях от зеркала. Введём те же обозначения: пусть — расстояние от предмета до линзы, — расстояние от изображения до линзы, — фокусное расстояние (расстояние от фокуса до линзы).

Для собирающей линзы :

Рис. 2. Собирающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе проходят через фокус, то точка фокуса и является точкой пересечения преломлённых лучей, тогда она же и есть изображение источника (точечное, действительное ).

Рис. 3. Собирающая линза (источник за двойным фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Для визуализации изображения введём описание предмета через стрелку. Точка пересечения преломившихся лучей — изображение (уменьшенное, действительное, перевёрнутое ). Положение — между фокусом и двойным фокусом.

Рис. 4. Собирающая линза (источник в двойном фокусе)

того же размера, действительное, перевёрнутое ). Положение — ровно в двойном фокусе.

Рис. 5. Собирающая линза (источник между двойным фокусом и фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Точка пересечения преломившихся лучей — изображение (увеличенное, действительное, перевёрнутое ). Положение — за двойным фокусом.

Рис. 6. Собирающая линза (источник в фокусе)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). В этом случае, оба преломлённых луча оказались параллельными друг другу, т.е. точка пересечения отражённых лучей отсутствует. Это говорит о том, что изображения нет .

Рис. 7. Собирающая линза (источник перед фокусом)

Воспользуемся ходом луча, идущего параллельно главной оптической оси (отражается в фокус) и идущего через главный оптический центр линзы (не преломляется). Однако преломлённые лучи расходятся, т.е. сами преломлённые лучи не пересекутся, зато могут пересечься продолжения этих лучей. Точка пересечения продолжений преломлённых лучей — изображение (увеличенное, мнимое, прямое ). Положение — по ту же сторону, что и предмет.

Для рассеивающей линзы построение изображений предметов практически не зависит от положения предмета, так что ограничимся произвольным положением самого предмета и характеристикой изображения.

Рис. 8. Рассеивающая линза (источник в бесконечности)

Т.к. все лучи, идущие параллельно главной оптической оси линзы, после преломления в линзе должны проходить через фокус (свойство фокуса), однако после преломления в рассеивающей линзе лучи должны расходится. Тогда в фокусе сходятся продолжения преломившихся лучей. Тогда точка фокуса и является точкой пересечения продолжений преломлённых лучей, т.е. она же и есть изображение источника (точечное, мнимое ).

  • любое другое положение источника (рис. 9).

Фокусное расстояние линзы зависит от степени кривизны её поверхности. Линза с более выпуклыми поверхностями преломляет лучи сильнее, чем линза с менее выпуклыми поверхностями, и поэтому обладает меньшим фокусным расстоянием.

Для определения фокусного расстояния собирающей линзы необходимо направить на неё солнечные лучи и, получив на экране за линзой резкое изображение Солнца, измерить расстояние от линзы до этого изображения. Поскольку лучи ввиду чрезвычайной удаленности Солнца будут падать на линзу практически параллельным пучком, то это изображение будет располагаться почти в фокусе линзы.

Физическая величина, обратная фокусному расстоянию линзы, называется оптической силой линзы (D):

D=1

Чем меньше фокусное расстояние линзы, тем больше её оптическая сила, т.е. тем сильнее она преломляет лучи. Ед. изм. (м -1) . Иначе эта единица называется диоптрией (дптр).

1 дптр – это оптическая сила линзы с фокусным расстоянием 1 м.

У собирающих и рассеивающих линз оптические силы отличаются знаком.

Собирающие линзы обладают действительным фокусом, поэтому их фокусное расстояние и оптическая сила считаются положительными (F>0, D>0).

Рассеивающие линзы обладают мнимым фокусом, поэтому их фокусное расстояние и оптическая сила считаются отрицательными (F<0, D<0).

Многие оптические приборы состоят из нескольких линз. Оптическая сила системы нескольких близкорасположенных линз равна сумме оптических сил всех линз этой системы. Если имеются две линзы с оптическими силами D 1 и D 2 , тоих общая оптическая сила будет равна: D= D 1 + D 2

Складываются лишь оптические силы, фокусное расстояние нескольких линз не совпадает с суммой фокусных расстояний отдельных линз.

При помощи линз можно не только собирать и рассеивать лучи света, но и получать разнообразные изображения предметов. Для построения изображения в линзах достаточно построения хода двух лучей: один проходит через оптический центр линзы без преломления, второй - луч, параллельный главной оптической оси.

1. Предмет находится между линзой и фокусом:

Изображение – увеличенное, мнимое, прямое. Такие изображения получают при пользовании лупой

2. Предмет находиться между фокусом и двойным фокусом

Изображение - действительное, увеличенное, перевернутое. Такие изображения получают в проекционных аппаратах.

3. Предмет за двойным фокусом

Линза дает уменьшенное, перевернутое, действительное изображение. Такое изображение используется в фотоаппарате.

Рассеивающая линза при любом расположении предмета дает уменьшенное, мнимое, прямое изображение. Она образует расходящийся пучок света


Глаз человека имеет почти шарообразную форму.

Его окружает плотная оболочка, которая называется склерой. Передняя часть склеры прозрачна и называется роговой оболочкой. За роговой оболочкой находится радужная оболочка, которая может быть окрашена у разных людей по-разному. Между роговой и радужной оболочками находится водянистая жидкость.

В радужной оболочке есть отверстие – зрачок, диаметр которого может изменяться в зависимости от освещения. За зрачком расположено прозрачное тело – хрусталик, который похож на двояко-выпуклую линзу. Хрусталик прикреплен мышцами к склере.

За хрусталиком расположено стекловидное тело. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры – глазное дно, покрыто сетчаткой.

Сетчатка состоит из тончайший волокон, которые устилают глазное дно. Они представляют собой разветвленные окончания зрительного нерва.

Свет, падающий на глаз, преломляется на передней поверхности глаза, в роговице, хрусталике и стекловидном теле, благодаря чему на сетчатке образуется действительное, уменьшенное, перевернутое изображение рассматриваемого предмета.

Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное восприятие окружающего мира. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.

Кривизна хрусталика может изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика не велика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна увеличивается.

Расстояние наилучшего видения для нормального глаза равно 25 см. Зрение двумя глазами увеличивает поле зрения, а также позволяет различить, какой предмет находиться ближе, а какой – дальше от нас. Дело в том, что на сетчатках левого и правого глаза получаются отличные друг от друга изображения. Чем ближе предмет, тем заметнее это отличие, оно и создает впечатление разницы в расстояниях. Благодаря зрению двумя глазами мы видим предмет объемным.

У человека с хорошим, нормальным зрением глаз в ненапряженном состоянии собирает параллельные лучи в точке, лежащей на сетчатке глаза. Иначе обстоит дело у людей, страдающих близорукостью и дальнозоркостью.

Близорукость – это недостаток зрения, при котором параллельные лучи после преломления в глазу собираются не на сетчатке, а ближе к хрусталику. Изображения удаленных предметов поэтому оказываются на сетчатке нечеткими, расплывчатыми. Чтобы на сетчатке получилось резкое изображение, рассматриваемый предмет необходимо приблизить к глазу.

Дальнозоркость – это недостаток зрения, при котором параллельные лучи после преломления в глазу сходятся под таким углом, что фокус оказывается расположенным не на сетчатке, а за ней. Изображения удаленных предметов на сетчатке при этом снова оказываются нечеткими, расплывчатыми. Поскольку дальнозоркий глаз не способен сфокусировать на сетчатке даже параллельные лучи, то еще хуже он собирает расходящиеся лучи, идущие от близкорасположенных предметов. Поэтому дальнозоркие люди плохо видят т вдали, и вблизи.


Пролог

Доброго здоровья друзья!

Недавно мне потребовалось срочно заказать бифокальные очки для работы, а для этого потребовался рецепт. Идти к врачу было хлопотно и дорого. Да и измерения, сделанные впопыхах, вовсе не гарантировали идеальный результат, в чём я уже не раз убеждался.

По сути ведь приходится платить за то, что у врача есть набор линз и линейка. В кабинетах же, оснащённых современным оборудованием, тарифы и вовсе какие-то заоблачные, хотя результатом является всё тот же небольшой клочок бумаги.

Но, ведь некоторый набор линз и линейка обычно имеются у каждого очкарика с многолетним стажем, особенно, если вдобавок он ещё и самодельщик.


В спокойной, домашней обстановке, подобрать линзы несложно, но как определить оптическую силу линз, чтобы можно было заполнить рецепт?


Конечно, можно было бы напрячься и узнать местонахождение мастерской, где врезают линзы в оправы, а потом попытаться за некоторую плату измерить все свои линзы на линзметре (диоптриметре).

Но, я всё же решил сделать всё своими руками, поэтому первым делом отправился в Интернет, чтобы найти инструкцию по замеру этого параметра в домашних условиях.



Но, как часто бывает, советы умозрительных специалистов из сети оказались полностью неработоспособными. Так что, пришлось разрабатывать собственную технологию подобных измерений.

Результатом этих трудов стала данная статья и новые бифокальные очки, которые совершенно не утомляют ни глаза, ни голову. Кроме этого, я узнал почему некоторые очки не прижились у меня на носу.

А теперь обо всём этом подробнее.


Небольшой экскурс в оптическую геометрию

Вспомним школьный курс оптической геометрии, чтобы понять, для чего нам придётся измерять фокусное расстояние линзы.


Всё дело в том, что оптическая сила линзы – величина, обратно пропорциональная фокусному расстоянию.



D – оптическая сила в диоптриях,

F – фокусное расстояние в метрах.


Например, линза с оптической силой в +3 диоптрии, будет иметь следующее фокусное расстояние:


F = 1/D = 1/3 ≈ 0,33 (метра)


Помните, как в детстве мы выжигали дырочки в бумаге с помощью папиной лупы?

Формула, описывающая процесс этой забавы выглядит так:


D = 1/L + 1/L sun = 1/L + 1/∞ ≈ 1/L


D – оптическая сила в диоптриях

L – расстояние от оптического центра линзы до бумаги

L sun – расстояние от Солнца до оптического центра линзы (можно принять равным бесконечности)


Но, Солнце слишком яркий и слишком громоздкий источник света, который, к тому же, может быть недоступен довольно длительное время.

Хотя, я и попробовал использовать наше светило для этого замера, точность измерений оказалось недостаточной. А вот использование точечного источника света позволило получить вполне приемлемые результаты.

Светодиод как точечный источник света


В качестве точечного источника света, можно использовать фонарик на одном светодиоде без рассеивателя.


Или смартфон, имеющий подсветку камеры.


Если нет ни того, ни другого, то можно всего за 10 центов приобрести на радиорынке сверхъяркий светодиод, как его называют продавцы.



Подключить светодиод к источнику питания несложно, но нужно выполнить два условия.

1. Напряжение источника питания должно быть заведомо выше падения напряжения на светодиоде. В белых светодиодах с прозрачной линзой три отдельных N-P перехода (RGB), поэтому и падение напряжения на них втрое выше, чем на обычных цветных светодиодах, и составляет около 3,5 Вольт.

2. Ток светодиода нужно ограничить, и проще всего это сделать с помощью балластного резистора. Если предельный ток неизвестен, то для бюджетных сверхъярких светодиодов диаметром 5мм можно выбрать значение 30-40мА.



R=(U Bat - U VD1)/I


R – сопротивление балластного резистора

U Bat – напряжение источника питания

U VD1 – падение напряжения на светодиоде

I – ток светодиода


Пример расчёта:

(7,2-3,5)/0,04=92,5(Ом)

Как измерить фокусное расстояние собирающей линзы?



Так как определить на глаз положение оптического центра очковой линзы сложно, если вообще возможно, то мы будем ориентироваться по краю линзы. Главное, чтобы это был один и тот же край, так как, нам придётся сделать два измерения, повернув очки на 180 градусов.

Это немного усложнит вычисления, но и тут я для вас нашёл весьма простое решение, о котором расскажу чуть ниже.

Итак, приступим.



Приставим к мишени линейку.

Сфокусируем изображение светодиода на мишени, стараясь обеспечить параллельность оптической оси линзы с линейкой.

Определим положение края линзы относительно линейки и зафиксируем результат измерений.


Повернём очки на 180 градусов и снова измерим расстояние.

В обоих случаях, измеряем расстояние между мишенью и одним и тем же краем одной и той же линзы! Это важно!


Внимание! У большинства канцелярских линеек край линейки не соответствует началу шкалы. Поэтому, в результаты измерений следуют внести поправку.

В моём случае, эта поправка равна 10см, так как я совместил плоскость мишени с отметкой 10см.


Как вычислить оптическую силу собирающей линзы в диоптриях?

Рассчитаем оптическую силу собирающей линзы (это когда диоптрии со знаком плюс) по следующей формуле:


Ds = 1/(S1*S2)^0,5+1/L


Ds

S1 – первый замер расстояния между собирающей линзой и мишенью в метрах

S2 – второй замер расстояния между собирающей линзой и мишенью в метрах

L


Но, лучше скопируйте следующий ниже текст в окно портативного калькулятора, который можно скачать из «Дополнительных материалов» к статье.

Затем внесите данные наших измерений в окно калькулятора и нажмите Enter на клавиатуре или «=» в окне калькулятора.



L=
\\От мишени до собирающей линзы (метр)
S1=
S2=

Ds=1/(S1*S2)^0,5+1/L

Вот так будет выглядеть расчёт собирающей очковой линзы – положительного мениска. Красным цветом выделены результаты измерений и ответ в диоптриях. Результат следует округлить до 1/4 диоптрии.


Как измерить фокусное расстояние рассеивающей очковой линзы?


С измерением оптической силы рассеивающей линзы (это когда диоптрии со знаком минус), всё будет чуточку сложнее.

Для замеров нам понадобится собирающая линза с оптической силой, превышающей оптическую силу рассеивающей линзы по абсолютной величине.


Проще говоря, диоптрий с плюсом должно быть заведомо больше чем предполагаемых диоптрий с минусом. В большинстве случаях, подойдёт обычная ручная лупа, линза от конденсора фотоувеличителя, макро линза от фотокамеры и т.д.


Чтобы убедиться в правильном выборе дополнительной линзы, прикладываем её к очкам. Система линз должна увеличивать изображение.


Сначала, как было описано выше, производим два замера для дополнительной лупы с поворотом на 180 градусов и записываем результаты. Как и прежде, для получения этих значений, используем один и тот же край лупы или её оправы. Это важно!


Затем, закрепляем на оправе лупу с помощью кольцевой резинки.


Снова делаем два замера с поворотом всей этой оптической системы на 180 градусов.

В итоге, мы должны получить пять результатов измерений, если считать и расстояние от мишени до источника света.


Как вычислить оптическую силу рассеивающей линзы в диоптриях?

Для расчёта оптической силы рассеивающей линзы используем следующие выражения:


Ds=1/(S1*S2)^0,5+1/L

Dw=1/(R1*R2)^0,5+1/L

Dr=Dw-Ds


L – расстояние между светодиодом и мишенью в метрах

S1 – первый замер расстояния от мишени до собирающей линзы в метрах

S2 – второй замер расстояния от мишени до собирающей линзы в метрах

R1 – первый замер расстояния от мишени до системы линз в метрах

R2 – второй замер расстояния от мишени до системы линз в метрах


Ds – оптическая сила собирающей линзы в диоптриях

Dw – оптическая сила системы линз в диоптриях

Dr – оптическая сила рассеивающей линзы в диоптриях


Я нарочно разбил формулу на три части, чтобы были видны промежуточные результаты в программе «Калькулятор-блокнот».

Просто скопируйте следующий ниже текст в окно калькулятора и внесите туда же полученные вами пять значений: L, S1, S2, R1, R2. Затем нажмите Enter, чтобы узнать оптическую силу рассеивающей линзы в диоптриях.


\\От мишени до светодиода (метр)
L=
\\От мишени до лупы (метр)
S1=
S2=

R1=
R2=
\\Оптическая сила лупы (диоптрия)
Ds=1/(S1*S2)^0,5+1/L

Dw=1/(R1*R2)^0,5+1/L

Dw-Ds

Это пример расчёта рассеивающей очковой линзы или отрицательного мениска. Красным цветом выделены результаты измерений и полученный результат в диоптриях.


Как измерить межцентровое расстояние или расстояние между зрачками?


Проще всего измерить расстояние между зрачками с помощью линейки и помощника. Помощник прикладывает линейку к вашим глазам и, глядя с расстояния 33см одним глазом, определяет расстояние между центрами зрачков. При плохих условиях освещения, можно ориентироваться по краю радужной оболочки. Вы в это время смотрите либо вдаль, либо на переносицу помощника, в зависимости от того, для каких целей заказываются очки. К полученному результату нужно прибавить 4мм (если речь идёт о взрослом человеке) и округлить до ближайшего целого числа, кратного двум. Это и будет расстоянием между оптическим осями линз, которое мы вносим в рецепт. Обычно разница в межцентровом расстоянии для чтения и для дали составляет 2мм.

Это не самый корректный метод замера, но когда дело касается неподготовленного помощника, другие методы обычно дают ещё более худшие результаты.


Если помощника нет, то эту операцию можно проделать с помощью смартфона. Приложив к глазам линейку, делаем снимок с расстояния 33см.

Внимание! Для более точного расчёта этого параметра, используйте формулу из следующего параграфа.


Как измерить расстояние между оптическими осями очковых линз?


Для измерения расстояния между оптическими осями собирающих очковых линз, закрепляем линейку на мишени. Очки располагаем параллельно мишени и фокусируем точеный источник света на мишени сразу обеими линзами.

Измеряем расстояние между светящимися точками и расстояние между мишенью и оправой очков.

Расчёт межцентрового расстояния выполняем по формуле, компенсирующей параллакс:



X=C*(L-S)/L


C – расстояние между световыми точками в метрах

L – расстояние от точечного источника света до мишени в метрах

S – расстояние от мишени до оправы очков в метрах

X – расстояние между оптическими осями линз в метрах


Для упрощения измерений, скопируйте следующий текст в окно программы «Калькулятор-блокнот» и внесите туда же значения переменных L, S и С. Затем нажмите на Enter.


\\От мишени до светодиода
L=
\\От мишени до оправы очков
S=
\\Между светящимися точками
C=
\\Межцентровое расстояние
X=C*(L-S)/L

Это пример расчёта расстояния между оптическими осями линз.


Мелкие подробности

В случае появления дискомфорта при использовании очков, можно проверить правильность установки линз

Если при одновременной фокусировке обеих линз, оправа окажется расположенной непараллельно мишени, значит в очки были установлены линзы с разной оптической силой. Также следует проверить расстояние между оптическим осями линз. Оно не должно отличаться от записанного в рецепте более чем на 1мм.

Как в домашних условиях измерить расстояние между оптическими осями рассеивающих линз, я не знаю.

Производя замеры межцентрового расстояния для бифокальных очков, можно заметить, что расстояния между оптическим осями основных и дополнительных линз будет отличаться на 2мм. Причём, для бифокальных сегментных линз (БСС), это расстояние заложено в саму конструкцию линзы, поэтому его легко проконтролировать на глазок, по параллельности расположения хорд малых линз.


А вот обычные бифокальные линзы (БС) могут быть установлены с недопустимой погрешностью и в случае дискомфорта, нужно проверить оба межцентровых расстояния.

Стоит также упомянуть тот факт, что чем больше оптическая сила очковых линз, тем точнее следует контролировать межцентровое расстояние.


Как правило, сферические фабричные очковые линзы выпускаются с дискретными значениями оптической силы, кратными 1/4 диоптрии.

Однако результаты вычислений могут отличаться от дискретных значений немного больше, чем можно было бы ожидать. Это может быть связано недостаточной точностью измерения и фокусировки линзы.

Для повышения точности измерений, можно увеличить число замеров, соответственно увеличив и степень извлекаемого корня.

Шаблон для измерения рассеивающей линзы для калькулятора методом четрырёх измерений:


\\От мишени до светодиода (метр)
L=
\\От мишени до собирающей линзой (метр)
S1=
S2=
S3=
S4=
\\От мишени до системы линз (метр)
R1=
R2=
R3=
R4=
\\Оптическая сила собирающей линзы (диоптрия)
Ds=1/(S1*S2*S3*S4)^0,25+1/L
\\Оптическая сила системы линз (диоптрия)
Dw=1/(R1*R2*R3*R4)^0,25+1/L
\\Оптическая сила рассеивающей линзы (диоптрия)
Dw-Ds